cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A344403 a(n) = Sum_{d|n} d * floor(n/d^2).

Original entry on oeis.org

1, 2, 3, 6, 5, 8, 7, 12, 12, 14, 11, 21, 13, 20, 18, 28, 17, 32, 19, 34, 27, 32, 23, 46, 30, 38, 36, 46, 29, 58, 31, 56, 42, 50, 40, 80, 37, 56, 51, 73, 41, 80, 43, 74, 65, 68, 47, 105, 56, 84, 66, 90, 53, 104, 65, 103, 75, 86, 59, 136, 61, 92, 91, 120, 75, 125, 67, 118, 90
Offset: 1

Views

Author

Wesley Ivan Hurt, May 16 2021

Keywords

Comments

If p is prime, a(p) = Sum_{d|p} d * floor(p/d^2) = 1*p + p*0 = p.

Examples

			a(6) = 8; Sum_{d|6} d * floor(6/d^2) = 1*6 + 2*1 + 3*0 + 6*0 = 8.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[(1 - Ceiling[n/k] + Floor[n/k]) k*Floor[n/k^2], {k, n}], {n, 100}]
  • PARI
    a(n) = sumdiv(n, d, d*(n\d^2)); \\ Michel Marcus, May 17 2021

Formula

G.f.: Sum_{k>=1} k*x^(k^2)/((1 - x^k)*(1 - x^(k^2))). - Miles Wilson, Jun 11 2025

A344405 a(n) = Sum_{d|n} (n/d) * floor(n/d^2).

Original entry on oeis.org

1, 4, 9, 18, 25, 39, 49, 72, 84, 110, 121, 166, 169, 217, 230, 292, 289, 372, 361, 455, 455, 539, 529, 670, 630, 754, 756, 889, 841, 1041, 961, 1168, 1122, 1292, 1232, 1530, 1369, 1615, 1573, 1828, 1681, 2037, 1849, 2200, 2109, 2369, 2209, 2716, 2408, 2820, 2686
Offset: 1

Views

Author

Wesley Ivan Hurt, May 16 2021

Keywords

Comments

If p is prime, a(p) = Sum_{d|p} (p/d) * floor(p/d^2) = p*p + 1*0 = p^2.

Examples

			a(4) = 18; Sum_{d|4} (4/d) * floor(4/d^2) = 4*4 + 2*1 + 1*0 = 18.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[(1 - Ceiling[n/k] + Floor[n/k]) (n/k) Floor[n/k^2], {k, n}], {n, 100}]
  • PARI
    a(n) = sumdiv(n, d, (n/d)*(n\d^2)); \\ Michel Marcus, May 17 2021
Showing 1-2 of 2 results.