A344417 Number of palindromic factorizations of n.
1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 7, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1
Offset: 1
Keywords
Examples
The palindromic factorizations for n = 2, 4, 16, 36, 64, 144: (2) (4) (16) (36) (64) (144) (2*2) (4*4) (6*6) (8*8) (12*12) (2*2*4) (2*2*9) (4*4*4) (4*4*9) (2*2*2*2) (3*3*4) (2*2*16) (4*6*6) (2*2*3*3) (2*2*4*4) (2*2*36) (2*2*2*2*4) (3*3*16) (2*2*2*2*2*2) (2*2*6*6) (3*3*4*4) (2*2*2*2*9) (2*2*3*3*4) (2*2*2*2*3*3)
Crossrefs
Positions of 1's are A005117.
The case of palindromic compositions is A016116.
The additive version (palindromic partitions) is A025065.
The case of palindromic prime signature is A242414.
The case of palindromic plane trees is A319436.
A001055 counts factorizations.
A229153 ranks non-palindromic partitions.
A265640 ranks palindromic partitions.
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; palQ[y_]:=Select[Permutations[y],#==Reverse[#]&]!={}; Table[Length[Select[facs[n],palQ]],{n,50}]
Formula
a(2^n) = A025065(n).
Comments