A344429 a(n) = Sum_{k=1..n} mu(k) * k^n.
1, -3, -34, -96, -3399, 30239, -624046, -4482626, -32249230, 9768165230, -186975207617, -2150337557747, -327482869358214, 6894274639051756, 539094536846680025, 8044964790023844733, -707278869236116107432, -12275330572755863672628, -2190860499375418948848067
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..386
Crossrefs
Programs
-
Mathematica
a[n_] := Sum[MoebiusMu[k] * k^n, {k,1,n}]; Array[a, 20] (* Amiram Eldar, May 19 2021 *)
-
PARI
a(n) = sum(k=1, n, moebius(k)*k^n);
-
Python
from functools import lru_cache from math import comb from sympy import bernoulli @lru_cache(maxsize=None) def faulhaber(n,p): """ Faulhaber's formula for calculating Sum_{k=1..n} k^p requires sympy version 1.12+ where bernoulli(1) = 1/2 """ return sum(comb(p+1,k)*bernoulli(k)*n**(p-k+1) for k in range(p+1))//(p+1) @lru_cache(maxsize=None) def A344429(n,m=None): if n <= 1: return 1 if m is None: m=n c, j = 1, 2 k1 = n//j while k1 > 1: j2 = n//k1 + 1 c += (faulhaber(j-1,m)-faulhaber(j2-1,m))*A344429(k1,m) j, k1 = j2, n//j2 return c+faulhaber(j-1,m)-faulhaber(n,m) # Chai Wah Wu, Nov 02 2023