cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344480 a(n) = Sum_{d|n} d * sigma_d(d), where sigma_k(n) is the sum of the k-th powers of the divisors of n.

Original entry on oeis.org

1, 11, 85, 1103, 15631, 284795, 5764809, 134745175, 3486961642, 100097682141, 3138428376733, 107019534806039, 3937376385699303, 155577590686826319, 6568408813691811835, 295152408847835466855, 14063084452067724991027, 708238048886862707907062, 37589973457545958193355621, 2097154000001929438984022793
Offset: 1

Views

Author

Wesley Ivan Hurt, May 20 2021

Keywords

Comments

If p is prime, a(p) = Sum_{d|p} d * sigma_d(d) = 1*(1^1) + p*(1^p + p^p) = 1 + p + p^(p+1).
Inverse Möbius transform of n * sigma_n(n). - Wesley Ivan Hurt, Mar 31 2025

Examples

			a(6) = Sum_{d|6} d * sigma_d(d) = 1*(1^1) + 2*(1^2 + 2^2) + 3*(1^3 + 3^3) + 6*(1^6 + 2^6 + 3^6 + 6^6) = 284795.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[k*DivisorSigma[k, k] (1 - Ceiling[n/k] + Floor[n/k]), {k, n}], {n, 30}]
  • PARI
    a(n) = sumdiv(n, d, d*sigma(d, d)); \\ Michel Marcus, May 21 2021