cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344485 a(n) = Sum_{d|n} (n-d) * phi(n/d).

Original entry on oeis.org

0, 1, 4, 8, 16, 21, 36, 44, 60, 73, 100, 104, 144, 157, 180, 208, 256, 261, 324, 328, 376, 421, 484, 476, 560, 601, 648, 680, 784, 765, 900, 912, 984, 1057, 1108, 1128, 1296, 1333, 1396, 1420, 1600, 1569, 1764, 1768, 1836, 1981, 2116, 2064, 2268, 2305, 2436, 2504, 2704, 2673
Offset: 1

Views

Author

Wesley Ivan Hurt, May 20 2021

Keywords

Comments

a(n) is the sum of the (n - 1)-th antidiagonal in A074712. - Ctibor O. Zizka, Mar 14 2025
Möbius transform of A189835(n). - Wesley Ivan Hurt, Jul 16 2025

Examples

			a(6) = Sum_{d|6} (6-d) * phi(6/d) = 5*phi(6) + 4*phi(3) + 3*phi(2) + 0*phi(1) = 5*2 + 4*2 + 3*1 + 0*1 = 21.
		

Crossrefs

Programs

  • Maple
    with(numtheory): seq(add((n-d)*phi(n/d), d in divisors(n)), n=1..80); # Ridouane Oudra, Jan 21 2024
  • Mathematica
    Table[Sum[(n - k)*EulerPhi[n/k^(1 - Ceiling[n/k] + Floor[n/k])] (1 - Ceiling[n/k] + Floor[n/k]), {k, n}], {n, 80}]
  • PARI
    a(n) = sumdiv(n, d, (n-d) * eulerphi(n/d)); \\ Michel Marcus, May 21 2021

Formula

a(n) = A000290(n) - A018804(n). - Ridouane Oudra, Jan 21 2024
From Wesley Ivan Hurt, Jul 16 2025: (Start)
a(n) = Sum_{d|n} A189835(d) * mu(n/d).
a(p^k) = p^(2*k)-p^k-k*p^k+k*p^(k-1) for p prime and k>=1. (End)