cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A344510 a(n) = Sum_{k=1..n} k * gcd(k,n).

Original entry on oeis.org

1, 5, 12, 24, 35, 63, 70, 112, 135, 185, 176, 312, 247, 371, 450, 512, 425, 729, 532, 920, 903, 935, 782, 1488, 1125, 1313, 1458, 1848, 1247, 2475, 1426, 2304, 2277, 2261, 2660, 3672, 2035, 2831, 3198, 4400, 2501, 4977, 2752, 4664, 5265, 4163, 3290, 6912, 4459, 6125, 5508, 6552
Offset: 1

Views

Author

Seiichi Manyama, May 21 2021

Keywords

Crossrefs

Programs

  • Magma
    A344510:= func< n | (n/2)*(&+[(d+1)*EulerPhi(Floor(n/d)): d in Divisors(n)]) >;
    [A344510(n): n in [1..60]]; // G. C. Greubel, Jun 24 2024
    
  • Mathematica
    a[n_] := Sum[k * GCD[k, n], {k, 1, n}]; Array[a, 50] (* Amiram Eldar, May 21 2021 *)
    A344510[n_]:= (n/2)*DivisorSum[n, (#+1)*EulerPhi[n/#] &];
    Table[A344510[n], {n,60}] (* G. C. Greubel, Jun 24 2024 *)
  • PARI
    a(n) = sum(k=1, n, k*gcd(k, n));
    
  • PARI
    a(n) = n*sumdiv(n, d, eulerphi(n/d)*(d+1))/2;
    
  • SageMath
    def A344510(n): return (n/2)*sum((k+1)*euler_phi(int(n//k)) for k in (1..n) if (k).divides(n))
    [A344510(n) for n in range(1,61)] # G. C. Greubel, Jun 24 2024

Formula

a(n) = n * (n + A018804(n))/2.
a(n) = (n/2) * (n + Sum_{d|n} phi(n/d) * d).
a(n) = (n/2) * Sum_{d|n} phi(n/d) * (d+1).

A344509 a(n) = (1/n) * Sum_{k=1..n} k * lcm(k,n).

Original entry on oeis.org

1, 3, 8, 16, 35, 45, 98, 116, 183, 215, 396, 316, 663, 609, 750, 912, 1513, 1107, 2128, 1560, 2135, 2453, 3818, 2428, 4325, 4095, 4914, 4452, 7743, 4425, 9486, 7280, 8613, 9299, 10640, 8088, 16243, 13053, 14378, 12100, 22181, 12663, 25628, 17996, 19305, 23345, 33558, 19200, 34251, 26075
Offset: 1

Views

Author

Seiichi Manyama, May 21 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[k * LCM[k, n], {k, 1, n}]/n; Array[a, 50] (* Amiram Eldar, May 21 2021 *)
  • PARI
    a(n) = sum(k=1, n, k*lcm(k, n))/n;

Formula

a(n) = A344508(n)/n.
Sum_{k=1..n} a(k) ~ zeta(3) * n^4 / (2*Pi^2). - Vaclav Kotesovec, May 29 2021
Showing 1-2 of 2 results.