cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344521 a(n) = Sum_{1 <= i <= j <= k <= n} gcd(i,j,k).

Original entry on oeis.org

1, 5, 13, 28, 47, 82, 116, 172, 235, 321, 397, 538, 641, 798, 980, 1192, 1361, 1655, 1863, 2218, 2553, 2912, 3210, 3766, 4171, 4661, 5183, 5840, 6303, 7168, 7694, 8510, 9283, 10095, 10951, 12190, 12929, 13932, 14990, 16414, 17315, 18925, 19913, 21438, 23055, 24500, 25674, 27862
Offset: 1

Views

Author

Seiichi Manyama, May 22 2021

Keywords

Crossrefs

Column k=3 of A345229.
Partial sums of A309322.

Programs

  • Mathematica
    a[n_] := Sum[Sum[Sum[GCD[i, j, k], {i, 1, j}], {j, 1, k}], {k, 1, n}]; Array[a, 50] (* Amiram Eldar, May 25 2021 *)
    nmax = 100; Rest[CoefficientList[Series[1/(1 - x)*Sum[EulerPhi[k]*x^k/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jun 05 2021 *)
    Accumulate[Table[Sum[EulerPhi[n/d] * d*(d+1)/2, {d, Divisors[n]}], {n, 1, 100}]] (* Vaclav Kotesovec, Jun 05 2021 *)
  • PARI
    a(n) = sum(i=1, n, sum(j=i, n, sum(k=j, n, gcd([i, j, k]))));

Formula

From Vaclav Kotesovec, Jun 05 2021: (Start)
a(n) ~ Pi^2 * n^3 / (36*zeta(3)).
G.f.: 1/(1-x) * Sum_{k>=1} phi(k) * x^k/(1 - x^k)^3, where phi is the Euler totient function (A000010).
a(n) = Sum_{k=1..n} Sum_{d|k} phi(k/d) * d*(d+1)/2. (End)
a(n) = Sum_{k=1..n} phi(k) * binomial(floor(n/k)+2,3). - Seiichi Manyama, Sep 13 2024