cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A344522 a(n) = Sum_{1 <= i, j, k <= n} gcd(i,j,k).

Original entry on oeis.org

1, 9, 30, 76, 141, 267, 400, 624, 885, 1249, 1590, 2208, 2689, 3411, 4248, 5248, 6081, 7485, 8530, 10248, 11889, 13687, 15228, 17988, 20053, 22569, 25242, 28588, 31053, 35463, 38284, 42540, 46581, 50893, 55362, 61824, 65857, 71247, 76884, 84388, 89349, 97881, 103342
Offset: 1

Views

Author

Seiichi Manyama, May 22 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[EulerPhi[k] * Quotient[n, k]^3, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, May 22 2021 *)
  • PARI
    a(n) = sum(i=1, n, sum(j=1, n, sum(k=1, n, gcd([i, j, k]))));
    
  • PARI
    a(n) = sum(k=1, n, eulerphi(k)*(n\k)^3);
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*x^k*(1+4*x^k+x^(2*k))/(1-x^k)^3)/(1-x))

Formula

a(n) = Sum_{k=1..n} phi(k) * floor(n/k)^3.
G.f.: (1/(1 - x)) * Sum_{k >= 1} phi(k) * x^k * (1 + 4*x^k + x^(2*k))/(1 - x^k)^3.
a(n) ~ Pi^2 * n^3 / (6*zeta(3)). - Vaclav Kotesovec, May 23 2021

A345229 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = Sum_{1 <= x_1 <= x_2 <= ... <= x_k <= n} gcd(x_1, x_2, ..., x_k).

Original entry on oeis.org

1, 1, 3, 1, 4, 6, 1, 5, 9, 10, 1, 6, 13, 17, 15, 1, 7, 18, 28, 26, 21, 1, 8, 24, 44, 47, 41, 28, 1, 9, 31, 66, 83, 82, 54, 36, 1, 10, 39, 95, 140, 159, 116, 74, 45, 1, 11, 48, 132, 225, 293, 249, 172, 95, 55, 1, 12, 58, 178, 346, 512, 509, 401, 235, 122, 66, 1, 13, 69, 234, 512, 852, 980, 888, 592, 321, 143, 78
Offset: 1

Views

Author

Seiichi Manyama, Jun 11 2021

Keywords

Examples

			G.f. of column 3: (1/(1 - x)) * Sum_{j>=1} phi(j) * x^j/(1 - x^j)^3.
Square array begins:
   1,  1,   1,   1,   1,   1,    1, ...
   3,  4,   5,   6,   7,   8,    9, ...
   6,  9,  13,  18,  24,  31,   39, ...
  10, 17,  28,  44,  66,  95,  132, ...
  15, 26,  47,  83, 140, 225,  346, ...
  21, 41,  82, 159, 293, 512,  852, ...
  28, 54, 116, 249, 509, 980, 1782, ...
		

Crossrefs

Columns k=1..4 give A000217, A272718, A344521, A344992.
Main diagonal gives A345230.

Programs

  • Maple
    T:= (n, k)-> coeff(series((1/(1-x))* add(numtheory[phi](j)
                 *x^j/(1-x^j)^k, j=1..n), x, n+1), x, n):
    seq(seq(T(n, 1+d-n), n=1..d), d=1..12);  # Alois P. Heinz, Jun 11 2021
  • Mathematica
    T[n_, k_] := Sum[DivisorSum[j, EulerPhi[j/#] * Binomial[k + # - 2, k - 1] &], {j, 1, n}];  Table[T[k, n - k + 1], {n, 1, 12}, {k, 1, n}] // Flatten (* Amiram Eldar, Jun 11 2021 *)
  • PARI
    T(n, k) = sum(j=1, n, sumdiv(j, d, eulerphi(j/d)*binomial(d+k-2, k-1)));
    
  • PARI
    T(n, k) = sum(j=1, n, eulerphi(j)*binomial(n\j+k-1, k)); \\ Seiichi Manyama, Sep 13 2024

Formula

G.f. of column k: (1/(1 - x)) * Sum_{j>=1} phi(j) * x^j/(1 - x^j)^k.
T(n,k) = Sum_{j=1..n} Sum_{d|j} phi(j/d) * binomial(d+k-2, k-1).
T(n,k) = Sum_{j=1..n} phi(j) * binomial(floor(n/j)+k-1,k). - Seiichi Manyama, Sep 13 2024

A344992 a(n) = Sum_{1 <= i <= j <= k <= m <= n} gcd(i,j,k,m).

Original entry on oeis.org

1, 6, 18, 44, 83, 159, 249, 401, 592, 867, 1163, 1655, 2122, 2796, 3594, 4594, 5579, 7046, 8394, 10328, 12339, 14699, 17021, 20441, 23526, 27317, 31379, 36323, 40846, 47300, 52786, 59954, 67191, 75380, 83720, 94662, 103837, 115137, 126851, 141059, 153440
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 05 2021

Keywords

Comments

In general, if g.f.: 1/(1-x) * Sum_{j>=1} phi(j) * x^j/(1 - x^j)^k, where k > 2 and phi is the Euler totient function (A000010), then a(n) ~ zeta(k-1) * n^k / (k! * zeta(k)).

Crossrefs

Column k=4 of A345229.
Partial sums of A309323.

Programs

  • Mathematica
    Table[Sum[Sum[Sum[Sum[GCD[i, j, k, m], {i, 1, j}], {j, 1, k}], {k, 1, m}], {m, 1, n}], {n, 1, 100}]
    nmax = 100; Rest[CoefficientList[Series[1/(1-x) * Sum[EulerPhi[k]*x^k/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x]]
    Accumulate[Table[Sum[EulerPhi[n/d] * d*(d+1)*(d+2)/6, {d, Divisors[n]}], {n, 1, 100}]] (* faster *)
  • PARI
    a(n) = sum(i=1, n, sum(j=i, n, sum(k=j, n, sum(m=k, n, gcd([i, j, k, m]))))); \\ Michel Marcus, Jun 06 2021

Formula

G.f.: 1/(1-x) * Sum_{k>=1} phi(k) * x^k/(1 - x^k)^4, where phi is the Euler totient function (A000010).
a(n) = Sum_{k=1..n} Sum_{d|k} phi(k/d) * d*(d+1)*(d+2)/6.
a(n) ~ 15 * zeta(3) * n^4 / (4*Pi^4).
a(n) = Sum_{k=1..n} phi(k) * binomial(floor(n/k)+3,4). - Seiichi Manyama, Sep 13 2024
Showing 1-3 of 3 results.