cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A344598 a(n) = Sum_{k=1..n} phi(k) * (floor(n/k)^2 - floor((n-1)/k)^2).

Original entry on oeis.org

1, 4, 7, 12, 13, 24, 19, 32, 33, 44, 31, 68, 37, 64, 75, 80, 49, 108, 55, 124, 109, 104, 67, 176, 105, 124, 135, 180, 85, 240, 91, 192, 177, 164, 199, 300, 109, 184, 211, 320, 121, 348, 127, 292, 333, 224, 139, 432, 217, 340, 279, 348, 157, 432, 323, 464, 313, 284, 175, 660, 181
Offset: 1

Views

Author

Seiichi Manyama, May 24 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[EulerPhi[k] * First @ Differences @ (Quotient[{n - 1, n}, k]^2), {k, 1, n}]; Array[a, 50] (* Amiram Eldar, May 24 2021 *)
  • PARI
    a(n) = sum(k=1, n, eulerphi(k)*((n\k)^2-((n-1)\k)^2));
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*x^k*(1+x^k)/(1-x^k)^2))

Formula

Sum_{k=1..n} a(k) = A018806(n).
G.f.: Sum_{k>=1} phi(k) * x^k * (1 + x^k)/(1 - x^k)^2.
Conjecture: a(n) = Sum_{k = 1..2*n} (-1)^k * gcd(k, 4*n). Cf. A344372. - Peter Bala, Jan 01 2024

A344600 a(n) = Sum_{k=1..n} phi(k) * (floor(n/k)^4 - floor((n-1)/k)^4).

Original entry on oeis.org

1, 16, 67, 192, 373, 768, 1111, 1904, 2601, 3872, 4651, 7280, 7837, 11056, 13215, 17024, 18001, 25488, 25363, 34624, 37093, 44576, 45607, 63440, 60345, 74368, 79803, 96432, 92653, 125616, 113551, 144192, 147297, 168656, 170947, 220320, 194581, 236608, 244759
Offset: 1

Views

Author

Seiichi Manyama, May 24 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[EulerPhi[k] * First @ Differences @ (Quotient[{n - 1, n}, k]^4), {k, 1, n}]; Array[a, 40] (* Amiram Eldar, May 24 2021 *)
  • PARI
    a(n) = sum(k=1, n, eulerphi(k)*((n\k)^4-((n-1)\k)^4));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*x^k*(1+11*x^k+11*x^(2*k)+x^(3*k))/(1-x^k)^4))

Formula

Sum_{k=1..n} a(k) = A344523(n).
G.f.: Sum_{k >= 1} phi(k) * x^k * (1 + 11*x^k + 11*x^(2*k) + x^(3*k))/(1 - x^k)^4.
Showing 1-2 of 2 results.