A344628 Primes p such that exactly four numbers among all circular permutations of the digits of p are prime.
1193, 1931, 3119, 3779, 7793, 7937, 9311, 9377, 11393, 11701, 11717, 11743, 13177, 13931, 13997, 16993, 17011, 17117, 17431, 17539, 17713, 19717, 19997, 21737, 23339, 23773, 30197, 31139, 31699, 31771, 32377, 33923, 37217, 38197, 39233, 39499, 39799, 39971
Offset: 1
Links
- Felix Fröhlich, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Select[Prime[Range[4500]],Count[FromDigits/@Table[RotateRight[IntegerDigits[#],d],{d,IntegerLength[ #]}],?PrimeQ]==4&] (* _Harvey P. Dale, Aug 31 2024 *)
-
PARI
rot(n) = if(#Str(n)==1, v=vector(1), v=vector(#n-1)); for(i=2, #n, v[i-1]=n[i]); u=vector(#n); for(i=1, #n, u[i]=n[i]); v=concat(v, u[1]); v eva(n) = subst(Pol(n), x, 10) is(n) = my(r=rot(digits(n)), i=0); while(r!=digits(n), if(ispseudoprime(eva(r)), i++); r=rot(r)); if(ispseudoprime(eva(r)), i++); if(n==1 || n==11, return(0)); if(i==4, 1, 0) forprime(p=1, 1e3, if(is(p), print1(p, ", ")))