A344633 Lengths k of k-digit integers of the form 1, 12, 123, 1234, ... (A057137) which are divisible by k.
1, 2, 3, 5, 6, 9, 10, 12, 14, 15, 16, 18, 30, 90, 96, 110, 197, 210, 270, 330, 390, 410, 630, 810, 930, 959, 990, 1110, 1170, 1210, 1230, 1470, 1710, 1890, 1956, 2310, 2430, 2530, 2538, 2710, 2730, 2790, 2802, 2922, 2970, 3330, 3510, 3519, 3630, 3690, 4115, 4245
Offset: 1
Examples
3 is a term since 123 is divisible by 3 (123 = 3*41).
Crossrefs
Cf. A057137.
Programs
-
Maple
for n from 1 to 5000 do if modp(A057137(n),n) = 0 then printf("%d,",n) ; end if; end do: # R. J. Mathar, Aug 16 2021
-
PARI
f(n) = 137174210*10^n\1111111111; \\ A057137 isok(k) = (f(k) % k) == 0; \\ Michel Marcus, Aug 16 2021
-
Python
a ="1234567890" for k in range(10): a = a + a sol = "" for n in range(1, len(a)): if int(a[0:n]) % n == 0: sol = sol + str(n) + ", " print(sol)
Formula
{n: n|A057137(n)}. - R. J. Mathar, Aug 16 2021
Comments