cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344658 a(n) = a^a - b^b + c^c - ... -+ d^d where the decimal expansion of n is abc...d.

Original entry on oeis.org

1, 1, 4, 27, 256, 3125, 46656, 823543, 16777216, 387420489, 0, 0, -3, -26, -255, -3124, -46655, -823542, -16777215, -387420488, 3, 3, 0, -23, -252, -3121, -46652, -823539, -16777212, -387420485, 26, 26, 23, 0, -229, -3098, -46629, -823516, -16777189, -387420462
Offset: 0

Views

Author

Massimo Corinaldesi, May 26 2021

Keywords

Comments

A045503 sums the corresponding powers of digits. This sequence alternates addition and subtraction of the powers of digits.

Crossrefs

Cf. A045503.

Programs

  • Mathematica
    pow[n_] := If[n == 0, 1, n^n]; a[n_] := Total[pow /@ (d = IntegerDigits[n])*(-1)^Range[0, Length[d] - 1]]; Array[a, 40, 0] (* Amiram Eldar, May 28 2021 *)
  • PARI
    a(n) = if(n, my(d=digits(n)); sum(k=1, #d, (-1)^(k+1)*d[k]^d[k]), 1) \\ Felix Fröhlich and Michel Marcus, May 26 + 31 2021
    
  • Python
    def a(n): return sum(d**d*(-1)**i for i, d in enumerate(map(int, str(n))))
    print([a(n) for n in range(40)]) # Michael S. Branicky, May 28 2021
  • newLISP
    (define (a n)
      (if (zero? n) 1
        (local (sign out power)
          (setq power '(1 1 4 27 256 3125 46656 823543 16777216 387420489))
          (setq out 0)
          (if (odd? (length n))
              (setq sign 1)
              (setq sign -1))
          (while (!= n 0)
            (setq out (+ out (* sign (power (% n 10)))))
            (setq sign (* sign -1))
            (setq n (/ n 10)))
          out)))