A344664
a(n) is the number of preference profiles in the stable marriage problem with n men and n women where both the men's and the women's preferences form a Latin square when arranged in a matrix. In addition, it is possible to arrange all people into n man-woman couples such that they rank each other first.
Original entry on oeis.org
1, 2, 24, 13824, 216760320, 917676490752000, 749944260264355430400000, 293457967200879687743551498616832000, 84112872283641495670736269523436185936222748672000, 27460610008848610956892895086773773421767179663217968124264448000000
Offset: 1
For n = 3, there are A002860(3) = 12 Latin squares of order 3. Thus, there are A002860(3) = 12 ways to set up the men's preference profiles. After that, the women's preference profiles form a Latin square with a fixed first column, as the first column is uniquely defined to generate 3 pairs of soulmates. Thus, there are A002860(3)/3! = 12/6 = 2 ways to set up the women's preference profiles, making a(3) = 12 * 2 = 24 preference profiles.
- Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, Sequences of the Stable Matching Problem, arXiv:2201.00645 [math.HO], 2021.
- Wikipedia, Gale-Shapley algorithm.
A351413
a(n) is the maximum number of stable matchings in the Latin Stable Marriage Problem of order n.
Original entry on oeis.org
1, 2, 3, 10, 9, 48, 61
Offset: 1
Maximal instance of order 2 with 2 stable matchings:
12
21
Maximal instance of order 3 with 3 stable matchings:
123
231
312
Maximal instance of order 4 with 10 stable matchings (group C2xC2):
1234
2143
3412
4321
Maximal instance of order 5 with 9 stable matchings:
12345
21453
34512
45231
53124
Maximal instance of order 6 with 48 stable matchings (Dihedral group):
123456
214365
365214
456123
541632
632541
Maximal instance of order 7 with 61 stable matchings:
1234567
2316745
3125476
4657312
5743621
6471253
7562134
- C. Converse, Lower bounds for the maximum number of stable pairings for the general marriage problem based on the latin marriage problem, Ph. D. Thesis, Claremont Graduate School, Claremont, CA (1992) [Examples are from 69-70].
- A. T. Benjamin, C. Converse, and H. A. Krieger, Note. How do I marry thee? Let me count the ways, Discrete Appl. Math. 59 (1995) 285-292.
- Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, Sequences of the Stable Matching Problem, arXiv:2201.00645 [math.HO], 2021 [Sections 3.7 and 4.2].
- J. S. Hwang, Complete stable marriages and systems of I-M preferences, In: McAvaney K.L. (eds) Combinatorial Mathematics VIII. Lecture Notes in Mathematics, vol 884. Springer, Berlin, Heidelberg (1981) 49-63.
- E. G. Thurber, Concerning the maximum number of stable matchings in the stable marriage problem, Discrete Math., 248 (2002), 195-219.
Showing 1-2 of 2 results.
Comments