cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A153818 a(n) = Sum_{k=1..n} floor(n^2/k^2).

Original entry on oeis.org

1, 5, 12, 22, 35, 53, 72, 96, 123, 153, 184, 222, 260, 304, 351, 402, 453, 510, 568, 633, 697, 765, 839, 916, 994, 1077, 1164, 1252, 1342, 1443, 1535, 1641, 1747, 1856, 1969, 2083, 2200, 2321, 2447, 2579, 2705, 2844, 2979, 3123, 3269, 3417, 3570, 3726, 3881
Offset: 1

Views

Author

Ctibor O. Zizka, Jan 02 2009

Keywords

Comments

How can Sum_{k=1..n} floor(n^2/k^2) be expressed as a function of Sum_{k=1..n} floor(n/k)? [Ctibor O. Zizka, Feb 14 2009]

Examples

			a(4)=22 because floor(16/1) + floor(16/4) + floor(16/9) + floor(16,16) = 16 + 4 + 1 + 1 = 22. [_Emeric Deutsch_, Jan 13 2009]
		

Crossrefs

Programs

  • Maple
    a := proc (n) options operator, arrow: sum(floor(n^2/k^2), k = 1 .. n) end proc: seq(a(n), n = 1 .. 50); # Emeric Deutsch, Jan 13 2009
  • PARI
    a(n)=sum(k=1,n,n^2\k^2) \\ Benoit Cloitre, Jan 22 2013

Formula

From Benoit Cloitre, Jan 22 2013: (Start)
Asymptotic formula: a(n) = zeta(2)*n^2 + zeta(1/2)*n + O(n^(1/2)).
Conjecture: a(n) = zeta(2)*n^2 + zeta(1/2)*n + O(n^0.5/log(n)) (see link). (End)

Extensions

Definition edited by Emeric Deutsch, Jan 13 2009
Extended by Emeric Deutsch, Jan 13 2009

A347415 a(n) = Sum_{k=1..n} floor((n/k)^k).

Original entry on oeis.org

1, 3, 6, 11, 18, 31, 48, 76, 118, 184, 279, 426, 641, 966, 1448, 2163, 3228, 4805, 7137, 10586, 15681, 23198, 34278, 50606, 74632, 109987, 161954, 238312, 350432, 514999, 756407, 1110391, 1629219, 2389346, 3502578, 5132354, 7517523, 11007078, 16110784, 23573102, 34480937, 50420909
Offset: 1

Views

Author

Seiichi Manyama, Aug 31 2021

Keywords

Examples

			a(3) = [3/1] + [(3/2)^2] + [(3/3)^3] = 3 + 2 + 1 = 6.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Floor[(n/k)^k], {k, 1, n}]; Array[a, 40] (* Amiram Eldar, Aug 31 2021 *)
  • PARI
    a(n) = sum(k=1, n, n^k\k^k);

Formula

a(n) ~ sqrt(2*Pi*n) * exp(exp(-1)*n - 1/2). - Vaclav Kotesovec, Sep 14 2021

A347416 a(n) = Sum_{k=1..n} floor((n/k)^n).

Original entry on oeis.org

1, 5, 31, 276, 3238, 47463, 830415, 16845619, 388198577, 10009945747, 285452668383, 8918294580680, 302912273410475, 11112687415252836, 437907284782655738, 18447025981637731050, 827246579683710818081, 39346558272075085340201, 1978423430905859200399397
Offset: 1

Views

Author

Seiichi Manyama, Aug 31 2021

Keywords

Examples

			a(3) = [(3/1)^3] + [(3/2)^3] + [(3/3)^3] = 27 + 3 + 1 = 31.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Floor[(n/k)^n], {k, 1, n}]; Array[a, 20] (* Amiram Eldar, Aug 31 2021 *)
  • PARI
    a(n) = sum(k=1, n, n^n\k^n);

Formula

a(n) ~ n^n. - Vaclav Kotesovec, Sep 14 2021

A350222 a(n) = Sum_{k=1..n} (-1)^(k+1) * floor((n/k)^3).

Original entry on oeis.org

1, 7, 25, 57, 114, 194, 310, 460, 658, 902, 1200, 1557, 1981, 2474, 3045, 3690, 4431, 5257, 6186, 7212, 8350, 9601, 10969, 12461, 14088, 15844, 17746, 19791, 21990, 24343, 26859, 29539, 32399, 35434, 38655, 42060, 45671, 49468, 53480, 57698, 62137, 66793, 71681
Offset: 1

Views

Author

Seiichi Manyama, Dec 20 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(-1)^(k + 1)*Floor[(n/k)^3], {k, 1, n}]; Array[a, 50] (* Amiram Eldar, Dec 20 2021 *)
  • PARI
    a(n) = sum(k=1, n, (-1)^(k+1)*(n^3\k^3));
    
  • Python
    def A350222(n): return (m:=n**3)+sum(m//k**3 if k&1 else -(m//k**3) for k in range(2,n+1)) # Chai Wah Wu, Oct 27 2023

Formula

a(n) = A309082(n^3).
Showing 1-4 of 4 results.