A344680 Number of partitions of n that are also multiplicity multiset of a partition of 2n.
1, 1, 2, 3, 4, 4, 8, 8, 12, 14, 18, 21, 30, 33, 41, 49, 62, 70, 86, 98, 116, 133, 160, 181, 214, 237, 282, 311, 364, 407, 466, 522, 600, 652, 761, 815, 937, 1038, 1179, 1271, 1442, 1577, 1762, 1930, 2158, 2311, 2636, 2831, 3146, 3402, 3784, 4057, 4537, 4869, 5365, 5745, 6370, 6802, 7562, 8061, 8785, 9471, 10410
Offset: 0
Keywords
Examples
a(0) = 1: []. a(1) = 1: [1]. a(2) = 2: [2], [1,1]. a(3) = 3: [3], [1,2], [1,1,1]. a(4) = 4: [4], [1,3], [2,2], [1,1,2]. a(5) = 4: [5], [1,4], [1,1,3], [1,2,2]. a(6) = 8: [6], [1,5], [2,4], [3,3], [1,1,4], [1,2,3], [2,2,2], [1,1,1,3]. a(7) = 8: [7], [1,6], [1,1,5], [1,2,4], [1,3,3], [2,2,3], [1,1,1,4], [1,1,2,3].
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i=1, `if`(n=0, {[]}, {[n]}), {b(n, i-1)[], seq(map(x-> sort([x[], j]), b(n-i*j, i-1))[], j=1..n/i)}) end: a:= n-> nops(select(l-> add(i, i=l)=n, b(2*n$2))): seq(a(n), n=0..30);
Formula
a(n) = A337584(2n,n).