cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344680 Number of partitions of n that are also multiplicity multiset of a partition of 2n.

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 8, 8, 12, 14, 18, 21, 30, 33, 41, 49, 62, 70, 86, 98, 116, 133, 160, 181, 214, 237, 282, 311, 364, 407, 466, 522, 600, 652, 761, 815, 937, 1038, 1179, 1271, 1442, 1577, 1762, 1930, 2158, 2311, 2636, 2831, 3146, 3402, 3784, 4057, 4537, 4869, 5365, 5745, 6370, 6802, 7562, 8061, 8785, 9471, 10410
Offset: 0

Views

Author

Alois P. Heinz, Aug 17 2021

Keywords

Examples

			a(0) = 1: [].
a(1) = 1: [1].
a(2) = 2: [2], [1,1].
a(3) = 3: [3], [1,2], [1,1,1].
a(4) = 4: [4], [1,3], [2,2], [1,1,2].
a(5) = 4: [5], [1,4], [1,1,3], [1,2,2].
a(6) = 8: [6], [1,5], [2,4], [3,3], [1,1,4], [1,2,3], [2,2,2], [1,1,1,3].
a(7) = 8: [7], [1,6], [1,1,5], [1,2,4], [1,3,3], [2,2,3], [1,1,1,4], [1,1,2,3].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, `if`(n=0, {[]}, {[n]}),
         {b(n, i-1)[], seq(map(x-> sort([x[], j]), b(n-i*j, i-1))[], j=1..n/i)})
        end:
    a:= n-> nops(select(l-> add(i, i=l)=n, b(2*n$2))):
    seq(a(n), n=0..30);

Formula

a(n) = A337584(2n,n).