A346988 a(n) is the smallest k > n such that n^(k-n) == 1 (mod k).
2, 20737, 9299, 7, 13, 311, 15, 127, 17, 37, 14, 23, 17, 157, 106, 31, 29, 312953, 45, 95951, 41, 91, 33, 47, 28, 95, 35, 271, 35, 9629, 39, 311, 85, 397, 46, 71, 43, 1793, 95, 79, 61, 821, 51, 18881, 67, 103, 51, 12409, 73, 409969, 65, 87, 65, 71233, 63, 155, 65, 69, 87, 1962251, 91, 2443783, 155
Offset: 1
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
a[n_] := Module[{k = n + 1}, While[PowerMod[n, k - n, k] != 1, k++]; k]; Array[a, 60] (* Amiram Eldar, Aug 10 2021 *)
-
PARI
a(n) = my(k=n+1); while (Mod(n, k)^(k-n) != 1, k++); k; \\ Michel Marcus, Aug 10 2021
-
Python
def A346988(n): k, kn = n+1, 1 while True: if pow(n,kn,k) == 1: return k k += 1 kn += 1 # Chai Wah Wu, Aug 28 2021
Extensions
More terms from Amiram Eldar, Aug 10 2021
Comments