A344703 Numbers k for which sigma(k^2) and psi(k^2) share a factor, where sigma is the sum of divisors, A000203, and psi is the Dedekind psi function, A001615.
14, 21, 26, 28, 35, 38, 39, 42, 52, 56, 57, 62, 63, 65, 70, 74, 76, 77, 78, 82, 84, 86, 93, 95, 98, 99, 104, 105, 111, 112, 114, 117, 119, 122, 124, 126, 129, 130, 133, 134, 140, 143, 146, 148, 152, 154, 155, 156, 158, 161, 166, 168, 171, 172, 175, 182, 183, 185, 186, 189, 190, 194, 195, 198, 201, 203, 206, 208, 209
Offset: 1
Keywords
Examples
Sigma (A000203) and the Dedekind psi function (A001615) are both multiplicative, so we gain insight by showing the values of these functions using their multiplicative properties:- sigma(14^2) = sigma(2^2) * sigma(7^2) = 7 * 57 = 7 * (3*19). psi(14^2) = psi(2^2) * psi(7^2) = 6 * 56 = (2*3) * (2^3*7). So sigma(14^2) and psi(14^2) share factors 3 and 7, so 14 is in the sequence. Looking in particular at the shared factor 3, we see it is present in sigma(7^2) and psi(2^2). For prime p, sigma(p^2) and psi(p^2) equate to polynomials in p, so we deduce 3 divides sigma(p^2) for p congruent to 7 modulo 3, and divides psi(p^2) for p congruent to 2 modulo 3. From this we see all products of a prime of the form 3m+1 and a prime of the form 3m+2 are in the sequence; for instance (3*4+1) * (3*1+2) = 13 * 5 = 65.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(k) local n,F, sig, psi, t; n:= k^2; F:= map(t -> [t[1],2*t[2]], ifactors(k)[2]); sig:= mul((t[1]^(1+t[2])-1)/(t[1]-1),t=F); psi:= n*mul(1+1/t[1],t=F); igcd(sig,psi) > 1 end proc: select(filter, [$1..300]); # Robert Israel, Jan 06 2024
-
Mathematica
filter[k_] := Module[{n, F, sig, psi}, n = k^2; F = {#[[1]], 2 #[[2]]}& /@ FactorInteger[k]; sig = Product[(t[[1]]^(1 + t[[2]]) - 1)/(t[[1]] - 1), {t, F}]; psi = n*Product[1 + 1/t[[1]], {t, F}]; GCD[sig, psi] > 1]; Select[Range[300], filter] // Quiet (* Jean-François Alcover, May 23 2024, after Robert Israel *)
-
PARI
A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615 A344695(n) = gcd(sigma(n), A001615(n)); isA344703(n) = (A344695(n^2)>1);
Comments