cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A344726 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} (-1)^(j+1) * floor(n/j)^k.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 1, 7, 9, 2, 1, 15, 27, 12, 4, 1, 31, 81, 56, 22, 4, 1, 63, 243, 240, 118, 30, 6, 1, 127, 729, 992, 610, 196, 44, 4, 1, 255, 2187, 4032, 3094, 1230, 324, 48, 7, 1, 511, 6561, 16256, 15562, 7564, 2336, 448, 71, 7, 1, 1023, 19683, 65280, 77998, 45990, 16596, 3840, 685, 83, 9
Offset: 1

Views

Author

Seiichi Manyama, May 27 2021

Keywords

Examples

			Square array begins:
  1,  1,   1,    1,    1,     1, ...
  1,  3,   7,   15,   31,    63, ...
  3,  9,  27,   81,  243,   729, ...
  2, 12,  56,  240,  992,  4032, ...
  4, 22, 118,  610, 3094, 15562, ...
  4, 30, 196, 1230, 7564, 45990, ...
		

Crossrefs

Columns k=1..5 give A059851, A344720, A344721, A344722, A344723.
T(n,n) gives A344724.
Cf. A344725.

Programs

  • Mathematica
    T[n_, k_] := Sum[(-1)^(j + 1) * Quotient[n, j]^k, {j, 1, n}]; Table[T[k, n - k + 1], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, May 27 2021 *)
  • PARI
    T(n, k) = sum(j=1, n, (-1)^(j+1)*(n\j)^k);
    
  • PARI
    T(n, k) = sum(j=1, n, sumdiv(j, d, (-1)^(j/d+1)*(d^k-(d-1)^k)));

Formula

G.f. of column k: (1/(1 - x)) * Sum_{j>=1} (j^k - (j - 1)^k) * x^j/(1 + x^j).
T(n,k) = Sum_{j=1..n} Sum_{d|j} (-1)^(j/d + 1) * (d^k - (d - 1)^k).

A350221 a(n) = Sum_{k=1..n} (-1)^(k+1) * floor((n/k)^2).

Original entry on oeis.org

1, 3, 8, 12, 21, 29, 40, 52, 67, 83, 100, 116, 140, 160, 185, 210, 237, 264, 298, 327, 363, 397, 435, 472, 514, 557, 602, 644, 690, 741, 791, 837, 897, 950, 1009, 1063, 1126, 1185, 1253, 1313, 1381, 1450, 1521, 1593, 1667, 1739, 1820, 1894, 1973, 2054, 2140
Offset: 1

Views

Author

Seiichi Manyama, Dec 20 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(-1)^(k + 1)*Floor[(n/k)^2], {k, 1, n}]; Array[a, 50] (* Amiram Eldar, Dec 20 2021 *)
  • PARI
    a(n) = sum(k=1, n, (-1)^(k+1)*(n^2\k^2));
    
  • Python
    def A350221(n): return (m:=n**2)+sum(m//k**2 if k&1 else -(m//k**2) for k in range(2,n+1)) # Chai Wah Wu, Oct 27 2023

Formula

a(n) = A309081(n^2).

A350162 a(n) = Sum_{k=1..n} (-1)^(k+1) * floor(n/(2*k-1))^2.

Original entry on oeis.org

1, 4, 8, 15, 25, 33, 45, 60, 73, 95, 115, 131, 157, 181, 205, 236, 270, 297, 333, 379, 403, 443, 487, 519, 578, 632, 672, 720, 778, 826, 886, 949, 989, 1059, 1131, 1186, 1260, 1332, 1388, 1482, 1564, 1612, 1696, 1776, 1858, 1946, 2038, 2102, 2187, 2308, 2380, 2490
Offset: 1

Views

Author

Seiichi Manyama, Dec 18 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(-1)^(k + 1) * Floor[n/(2*k - 1)]^2, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, Dec 18 2021 *)
  • PARI
    a(n) = sum(k=1, n, (-1)^(k+1)*(n\(2*k-1))^2);
    
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, kronecker(-4, k/d)*(2*d-1)));
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, (2*k-1)*x^k/(1+x^(2*k)))/(1-x))

Formula

a(n) = Sum_{k=1..n} Sum_{d|k} A101455(k/d) * (2*d - 1) = Sum_{k=1..n} 2 * A050469(k) - A002654(k) = 2 * A350166(n) - A014200(n).
G.f.: (1/(1 - x)) * Sum_{k>=1} (2*k - 1) * x^k/(1 + x^(2*k)).
Showing 1-3 of 3 results.