A344725
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} floor(n/j)^k.
Original entry on oeis.org
1, 1, 3, 1, 5, 5, 1, 9, 11, 8, 1, 17, 29, 22, 10, 1, 33, 83, 74, 32, 14, 1, 65, 245, 274, 136, 52, 16, 1, 129, 731, 1058, 644, 254, 66, 20, 1, 257, 2189, 4162, 3160, 1396, 382, 92, 23, 1, 513, 6563, 16514, 15692, 8054, 2502, 596, 115, 27, 1, 1025, 19685, 65794, 78256, 47452, 17086, 4388, 833, 147, 29
Offset: 1
Square array begins:
1, 1, 1, 1, 1, 1, ...
3, 5, 9, 17, 33, 65, ...
5, 11, 29, 83, 245, 731, ...
8, 22, 74, 274, 1058, 4162, ...
10, 32, 136, 644, 3160, 15692, ...
14, 52, 254, 1396, 8054, 47452, ...
-
T[n_, k_] := Sum[Quotient[n, j]^k, {j, 1, n}]; Table[T[k, n - k + 1], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, May 27 2021 *)
-
T(n, k) = sum(j=1, n, (n\j)^k);
-
T(n, k) = sum(j=1, n, sumdiv(j, d, d^k-(d-1)^k));
-
from math import isqrt
from itertools import count, islice
def A344725_T(n,k): return -(s:=isqrt(n))**(k+1)+sum((q:=n//w)*(w**k-(w-1)**k+q**(k-1)) for w in range(1,s+1))
def A344725_gen(): # generator of terms
return (A344725_T(k+1,n-k) for n in count(1) for k in range(n))
A344725_list = list(islice(A344725_gen(),30)) # Chai Wah Wu, Oct 26 2023
A344720
a(n) = Sum_{k=1..n} (-1)^(k+1) * floor(n/k)^2.
Original entry on oeis.org
1, 3, 9, 12, 22, 30, 44, 48, 71, 83, 105, 115, 141, 157, 201, 206, 240, 266, 304, 318, 378, 402, 448, 460, 519, 547, 623, 641, 699, 747, 809, 815, 907, 943, 1035, 1064, 1138, 1178, 1286, 1302, 1384, 1448, 1534, 1560, 1710, 1758, 1852, 1866, 1977, 2039, 2179, 2209, 2315, 2395, 2535
Offset: 1
-
a[n_] := Sum[(-1)^(k + 1) * Quotient[n, k]^2, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, May 27 2021 *)
Accumulate[Table[-2*DivisorSigma[0, 2*n] + 3*DivisorSigma[0, n] + 2*DivisorSigma[1, 2*n] - 4*DivisorSigma[1, n], {n, 1, 50}]] (* Vaclav Kotesovec, May 28 2021 *)
-
a(n) = sum(k=1, n, (-1)^(k+1)*(n\k)^2);
-
a(n) = sum(k=1, n, sumdiv(k, d, (-1)^(k/d+1)*(2*d-1)));
-
my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, (2*k-1)*x^k/(1+x^k))/(1-x))
A344721
a(n) = Sum_{k=1..n} (-1)^(k+1) * floor(n/k)^3.
Original entry on oeis.org
1, 7, 27, 56, 118, 196, 324, 448, 685, 901, 1233, 1549, 2019, 2445, 3157, 3664, 4482, 5262, 6290, 7128, 8536, 9598, 11118, 12392, 14255, 15743, 18087, 19711, 22149, 24417, 27209, 29251, 32771, 35327, 39087, 42048, 46046, 49244, 54180, 57512, 62434, 66838, 72258, 76246
Offset: 1
-
a[n_] := Sum[(-1)^(k + 1) * Quotient[n, k]^3, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, May 27 2021 *)
Accumulate[Table[-3*DivisorSigma[0, n] + 2*DivisorSigma[0, 2*n] + 6*DivisorSigma[1, n] - 3*DivisorSigma[1, 2*n] - 9/2 * DivisorSigma[2, n] + 3/2 * DivisorSigma[2, 2*n], {n, 1, 50}]] (* Vaclav Kotesovec, May 28 2021 *)
-
a(n) = sum(k=1, n, (-1)^(k+1)*(n\k)^3);
-
a(n) = sum(k=1, n, sumdiv(k, d, (-1)^(k/d+1)*(d^3-(d-1)^3)));
-
my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, (k^3-(k-1)^3)*x^k/(1+x^k))/(1-x))
A344724
a(n) = Sum_{k=1..n} (-1)^(k+1) * floor(n/k)^n.
Original entry on oeis.org
1, 3, 27, 240, 3094, 45990, 821484, 16711680, 387177517, 9990293423, 285263019633, 8913939911695, 302862111412779, 11111328866154037, 437889173336927557, 18446462747068745474, 827238010832411671962, 39346258082152478030126
Offset: 1
-
a[n_] := Sum[(-1)^(k + 1) * Quotient[n, k]^n, {k, 1, n}]; Array[a, 18] (* Amiram Eldar, May 27 2021 *)
-
a(n) = sum(k=1, n, (-1)^(k+1)*(n\k)^n);
-
a(n) = sum(k=1, n, sumdiv(k, d, (-1)^(k/d+1)*(d^n-(d-1)^n)));
A350161
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} (-1)^(j+1) * floor(n/(2*j-1))^k.
Original entry on oeis.org
1, 1, 2, 1, 4, 2, 1, 8, 8, 3, 1, 16, 26, 15, 5, 1, 32, 80, 63, 25, 5, 1, 64, 242, 255, 125, 33, 5, 1, 128, 728, 1023, 625, 209, 45, 6, 1, 256, 2186, 4095, 3125, 1281, 335, 60, 7, 1, 512, 6560, 16383, 15625, 7745, 2385, 504, 73, 9, 1, 1024, 19682, 65535, 78125, 46593, 16775, 4080, 703, 95, 9
Offset: 1
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
2, 4, 8, 16, 32, 64, 128, ...
2, 8, 26, 80, 242, 728, 2186, ...
3, 15, 63, 255, 1023, 4095, 16383, ...
5, 25, 125, 625, 3125, 15625, 78125, ...
5, 33, 209, 1281, 7745, 46593, 279809, ...
5, 45, 335, 2385, 16775, 117585, 823415, ...
-
T[n_, k_] := Sum[(-1)^(j + 1) * Floor[n/(2*j - 1)]^k, {j, 1, n}]; Table[T[k, n - k + 1], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Dec 18 2021 *)
-
T(n, k) = sum(j=1, n, (-1)^(j+1)*(n\(2*j-1))^k);
-
T(n, k) = sum(j=1, n, sumdiv(j, d, kronecker(-4, j/d)*(d^k-(d-1)^k)));
A344722
a(n) = Sum_{k=1..n} (-1)^(k+1) * floor(n/k)^4.
Original entry on oeis.org
1, 15, 81, 240, 610, 1230, 2336, 3840, 6371, 9455, 14097, 19615, 27441, 36205, 48849, 61874, 79860, 99470, 124816, 150846, 186498, 221646, 267232, 313840, 373059, 431599, 508595, 581009, 673635, 767835, 881357, 989615, 1131667, 1264111, 1429875, 1590464, 1785010
Offset: 1
-
a[n_] := Sum[(-1)^(k + 1) * Quotient[n, k]^4, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, May 27 2021 *)
Accumulate[Table[3*DivisorSigma[0, n] - 2*DivisorSigma[0, 2*n] - 8*DivisorSigma[1, n] + 4*DivisorSigma[1, 2*n] + 9*DivisorSigma[2, n] - 3*DivisorSigma[2, 2*n] - 5*DivisorSigma[3, n] + DivisorSigma[3, 2*n], {n, 1, 50}]] (* Vaclav Kotesovec, May 28 2021 *)
-
a(n) = sum(k=1, n, (-1)^(k+1)*(n\k)^4);
-
a(n) = sum(k=1, n, sumdiv(k, d, (-1)^(k/d+1)*(d^4-(d-1)^4)));
-
my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (k^4-(k-1)^4)*x^k/(1+x^k))/(1-x))
A344723
a(n) = Sum_{k=1..n} (-1)^(k+1) * floor(n/k)^5.
Original entry on oeis.org
1, 31, 243, 992, 3094, 7564, 16596, 31744, 58237, 97117, 158169, 241837, 364299, 521829, 745693, 1018120, 1389402, 1837302, 2423834, 3105432, 3998776, 5007286, 6289998, 7738784, 9543887, 11537207, 14031231, 16717879, 20018661, 23629281, 27958433, 32577739, 38219963, 44148743
Offset: 1
-
a[n_] := Sum[(-1)^(k + 1) * Quotient[n, k]^5, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, May 27 2021 *)
Accumulate[Table[-3*DivisorSigma[0, n] + 2*DivisorSigma[0, 2*n] + 10*DivisorSigma[1, n] - 5*DivisorSigma[1, 2*n] - 15*DivisorSigma[2, n] + 5*DivisorSigma[2, 2*n] + 25/2 * DivisorSigma[3, n] - 5/2 * DivisorSigma[3, 2*n] - 45/8 *DivisorSigma[4, n] + 5/8 * DivisorSigma[4, 2*n], {n, 1, 50}]] (* Vaclav Kotesovec, May 28 2021 *)
-
a(n) = sum(k=1, n, (-1)^(k+1)*(n\k)^5);
-
a(n) = sum(k=1, n, sumdiv(k, d, (-1)^(k/d+1)*(d^5-(d-1)^5)));
-
my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (k^5-(k-1)^5)*x^k/(1+x^k))/(1-x))
Showing 1-7 of 7 results.
Comments