A344726 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} (-1)^(j+1) * floor(n/j)^k.
1, 1, 1, 1, 3, 3, 1, 7, 9, 2, 1, 15, 27, 12, 4, 1, 31, 81, 56, 22, 4, 1, 63, 243, 240, 118, 30, 6, 1, 127, 729, 992, 610, 196, 44, 4, 1, 255, 2187, 4032, 3094, 1230, 324, 48, 7, 1, 511, 6561, 16256, 15562, 7564, 2336, 448, 71, 7, 1, 1023, 19683, 65280, 77998, 45990, 16596, 3840, 685, 83, 9
Offset: 1
Examples
Square array begins: 1, 1, 1, 1, 1, 1, ... 1, 3, 7, 15, 31, 63, ... 3, 9, 27, 81, 243, 729, ... 2, 12, 56, 240, 992, 4032, ... 4, 22, 118, 610, 3094, 15562, ... 4, 30, 196, 1230, 7564, 45990, ...
Links
- Seiichi Manyama, Antidiagonals n = 1..140, flattened
Crossrefs
Programs
-
Mathematica
T[n_, k_] := Sum[(-1)^(j + 1) * Quotient[n, j]^k, {j, 1, n}]; Table[T[k, n - k + 1], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, May 27 2021 *)
-
PARI
T(n, k) = sum(j=1, n, (-1)^(j+1)*(n\j)^k);
-
PARI
T(n, k) = sum(j=1, n, sumdiv(j, d, (-1)^(j/d+1)*(d^k-(d-1)^k)));
Formula
G.f. of column k: (1/(1 - x)) * Sum_{j>=1} (j^k - (j - 1)^k) * x^j/(1 + x^j).
T(n,k) = Sum_{j=1..n} Sum_{d|j} (-1)^(j/d + 1) * (d^k - (d - 1)^k).