A344759 a(n) = n divided by the smallest divisor d of n for which A011772(d) = A011772(n), where A011772(n) is the smallest number m such that m(m+1)/2 is divisible by n.
1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 3, 1, 2, 1, 7, 1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 3, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 5, 1, 3, 2, 1, 3, 1, 1, 1, 1, 1, 3, 1, 4, 1, 1, 1, 1, 1, 2, 3, 1, 1, 6, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 3, 1, 2, 1, 4, 1, 1, 1, 1, 3
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
PARI
A011772(n) = { if(n==1, return(1)); my(f=factor(if(n%2, n, 2*n)), step=vecmax(vector(#f~, i, f[i, 1]^f[i, 2]))); forstep(m=step, 2*n, step, if(m*(m-1)/2%n==0, return(m-1)); if(m*(m+1)/2%n==0, return(m))); }; \\ From A011772 A344759(n) = { my(x=A011772(n)); fordiv(n,d,if(A011772(d)==x, return(n/d))); }; (Python 3.8+) from itertools import combinations from math import prod from sympy import factorint, divisors from sympy.ntheory.modular import crt def A011772(n): plist = [p**q for p, q in factorint(2*n).items()] if len(plist) == 1: return n-1 if plist[0] % 2 else 2*n-1 return min(min(crt([m,2*n//m],[0,-1])[0],crt([2*n//m,m],[0,-1])[0]) for m in (prod(d) for l in range(1,len(plist)//2+1) for d in combinations(plist,l))) def A344759(n): m = A011772(n) for d in divisors(n): if A011772(d) == m: return n//d # Chai Wah Wu, Jun 03 2021
Formula
a(n) = n / A344758(n).
Comments