cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344759 a(n) = n divided by the smallest divisor d of n for which A011772(d) = A011772(n), where A011772(n) is the smallest number m such that m(m+1)/2 is divisible by n.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 3, 1, 2, 1, 7, 1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 3, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 5, 1, 3, 2, 1, 3, 1, 1, 1, 1, 1, 3, 1, 4, 1, 1, 1, 1, 1, 2, 3, 1, 1, 6, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 3, 1, 2, 1, 4, 1, 1, 1, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Jun 01 2021

Keywords

Comments

It seems that A006516 gives the positions of records after its initial zero.

Crossrefs

Cf. A006516, A011772, A344758, A344881 (positions of ones), A344882 (of terms > 1).

Programs

  • PARI
    A011772(n) = { if(n==1, return(1)); my(f=factor(if(n%2, n, 2*n)), step=vecmax(vector(#f~, i, f[i, 1]^f[i, 2]))); forstep(m=step, 2*n, step, if(m*(m-1)/2%n==0, return(m-1)); if(m*(m+1)/2%n==0, return(m))); }; \\ From A011772
    A344759(n) = { my(x=A011772(n)); fordiv(n,d,if(A011772(d)==x, return(n/d))); };
    (Python 3.8+)
    from itertools import combinations
    from math import prod
    from sympy import factorint, divisors
    from sympy.ntheory.modular import crt
    def A011772(n):
        plist = [p**q for p, q in factorint(2*n).items()]
        if len(plist) == 1:
            return n-1 if plist[0] % 2 else 2*n-1
        return min(min(crt([m,2*n//m],[0,-1])[0],crt([2*n//m,m],[0,-1])[0]) for m in (prod(d) for l in range(1,len(plist)//2+1) for d in combinations(plist,l)))
    def A344759(n):
        m = A011772(n)
        for d in divisors(n):
            if A011772(d) == m:
                return n//d # Chai Wah Wu, Jun 03 2021

Formula

a(n) = n / A344758(n).