cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344769 a(n) = A005187(n) - A011772(n).

Original entry on oeis.org

0, 0, 2, 0, 4, 7, 5, 0, 8, 14, 9, 14, 11, 18, 21, 0, 16, 26, 17, 23, 33, 30, 20, 31, 23, 37, 24, 46, 26, 41, 27, 0, 53, 50, 53, 62, 35, 54, 62, 63, 39, 61, 40, 53, 77, 65, 43, 62, 47, 73, 81, 62, 50, 77, 95, 61, 92, 84, 55, 101, 57, 88, 93, 0, 103, 119, 65, 118, 112, 117, 68, 79, 71, 109, 122, 93, 129, 140, 75, 94, 79, 121
Offset: 1

Views

Author

Antti Karttunen, May 30 2021

Keywords

Crossrefs

Programs

  • PARI
    A005187(n) = { my(s=n); while(n>>=1, s+=n); s; };
    A011772(n) = { if(n==1, return(1)); my(f=factor(if(n%2, n, 2*n)), step=vecmax(vector(#f~, i, f[i, 1]^f[i, 2]))); forstep(m=step, 2*n, step, if(m*(m-1)/2%n==0, return(m-1)); if(m*(m+1)/2%n==0, return(m))); }; \\ From A011772
    A344769(n) = (A005187(n) - A011772(n));
    
  • Python
    from itertools import combinations
    from math import prod
    from sympy import factorint, divisors
    from sympy.ntheory.modular import crt
    def A344769(n):
        c = 2*n-bin(n).count('1')
        plist = [p**q for p, q in factorint(2*n).items()]
        if len(plist) == 1:
            return int(c+1+(plist[0] % 2 - 2)*n)
        return int(c-min(min(crt([m,2*n//m],[0,-1])[0],crt([2*n//m,m],[0,-1])[0]) for m in (prod(d) for l in range(1,len(plist)//2+1) for d in combinations(plist,l)))) # Chai Wah Wu, Jun 03 2021

Formula

a(n) = A005187(n) - A011772(n).
a(n) = A344765(n) + A294898(n).
a(2^e) = 0, for e >= 0.
If n is an odd prime power, then a(n) = n+1-A000120(n). - Chai Wah Wu, Jun 03 2021