cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344780 Semiprimes that are product of two distinct Honaker primes.

Original entry on oeis.org

34453, 59867, 120191, 136109, 137419, 142921, 170431, 178291, 187723, 205801, 250603, 253223, 273257, 275887, 280471, 286933, 290951, 297763, 319771, 339421, 342163, 348853, 354617, 356189, 357499, 357943, 367193, 376879, 401777, 410947, 413173, 422999, 449723
Offset: 1

Views

Author

K. D. Bajpai, May 28 2021

Keywords

Comments

Subsequence of A006881.
a(1) = 34453 is the only number <= 5*10^6 that is a triangular number.

Examples

			34453 = 131*263 which are distinct Honaker primes.
120191 = 263*457 which are distinct Honaker primes.
		

Crossrefs

Programs

  • Maple
    isA006881 := proc(n)
        if numtheory[bigomega](n) =2 and A001221(n) = 2 then
            true ;
        else
            false ;
        end if;
    end proc:
    isA344780 := proc(n)
        if isA006881(n) then
            for p in ifactors(n)[2] do
                if not isA033548(op(1,p)) then
                    return false;
                end if;
            end do:
            true ;
        else
            false;
        end if;
    end proc:
    for n from 1  do
        if isA344780(n) then
            printf("%d,\n",n);
        end if;
    end do: # R. J. Mathar, Jul 07 2021
  • Mathematica
    fHQ[n_] := Plus @@ IntegerDigits@n == Plus @@ IntegerDigits@PrimePi@n;
    lst = {}; Do[If[Plus @@ Last /@ FactorInteger[n] == 2, a = Length[First /@ FactorInteger[n]]; If[a == 2, b = First /@ FactorInteger[n]; c = b[[1]]; d = b[[2]]; If[fHQ[c] && fHQ[d], AppendTo[lst, {n,c,d}]]]], {n, 2000000}]; lst