A344787 a(n) = n * Sum_{d|n} sigma_d(d) / d, where sigma_k(n) is the sum of the k-th powers of the divisors of n.
1, 7, 31, 287, 3131, 47527, 823551, 16843583, 387440266, 10009772937, 285311670623, 8918294639219, 302875106592267, 11112685050294387, 437893920912795941, 18447025553014982271, 827240261886336764195, 39346558271492953948522, 1978419655660313589123999
Offset: 1
Keywords
Examples
a(4) = 4 * Sum_{d|4} sigma_d(d) / d = 4 * ((1^1)/1 + (1^2 + 2^2)/2 + (1^4 + 2^4 + 4^4)/4) = 287.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..386
Crossrefs
Programs
-
Mathematica
Table[n*Sum[DivisorSigma[k, k] (1 - Ceiling[n/k] + Floor[n/k])/k, {k, n}], {n, 20}]
-
PARI
my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, sigma(k, k)*x^k/(1-x^k)^2)) \\ Seiichi Manyama, Dec 16 2022
Formula
G.f.: Sum_{k>=1} sigma_k(k) * x^k/(1 - x^k)^2. - Seiichi Manyama, Dec 16 2022
Comments