cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A345512 Numbers that are the sum of six cubes in three or more ways.

Original entry on oeis.org

221, 254, 369, 411, 443, 469, 495, 502, 576, 595, 600, 626, 648, 658, 684, 704, 711, 720, 739, 746, 753, 760, 765, 767, 772, 774, 779, 786, 793, 811, 818, 828, 830, 835, 837, 844, 854, 856, 863, 866, 873, 874, 880, 884, 886, 891, 892, 893, 899, 905, 910, 919
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			254 is a term because 254 = 1^3 + 1^3 + 1^3 + 1^3 + 4^3 + 4^3 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 5^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 3])
        for x in range(len(rets)):
            print(rets[x])

A344796 Numbers that are the sum of five squares in three or more ways.

Original entry on oeis.org

29, 32, 35, 37, 40, 43, 44, 46, 51, 52, 53, 56, 58, 59, 61, 62, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 106, 107, 108, 109, 110, 111, 112
Offset: 1

Views

Author

Sean A. Irvine, May 28 2021

Keywords

Crossrefs

A344806 Numbers that are the sum of six squares in two or more ways.

Original entry on oeis.org

21, 24, 29, 30, 33, 36, 38, 39, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			24 = 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 4^2
   = 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2
so 24 is a term.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**2 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 2])
        for x in range(len(rets)):
            print(rets[x])

A344808 Numbers that are the sum of six squares in four or more ways.

Original entry on oeis.org

36, 41, 44, 45, 53, 54, 56, 57, 60, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			41 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 6^2
   = 1^2 + 1^2 + 1^2 + 2^2 + 3^2 + 5^2
   = 1^2 + 2^2 + 3^2 + 3^2 + 3^2 + 3^2
   = 2^2 + 2^2 + 2^2 + 2^2 + 3^2 + 4^2
so 41 is a term.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**2 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 4])
        for x in range(len(rets)):
            print(rets[x])

A345480 Numbers that are the sum of seven squares in three or more ways.

Original entry on oeis.org

31, 34, 37, 39, 40, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			34 is a term because 34 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 5^2 = 1^2 + 1^2 + 1^2 + 2^2 + 3^2 + 3^2 + 3^2 = 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 4^2.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**2 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 3])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-5 of 5 results.