cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344814 a(n) = Sum_{k=1..n} floor(n/k) * 3^(k-1).

Original entry on oeis.org

1, 5, 15, 46, 128, 384, 1114, 3332, 9903, 29671, 88721, 266151, 797593, 2392649, 7175709, 21526834, 64573556, 193720536, 581141026, 1743422288, 5230207428, 15690619684, 47071679294, 141215037738, 423644574301, 1270933715189, 3812799550089, 11438398630159
Offset: 1

Views

Author

Seiichi Manyama, May 29 2021

Keywords

Comments

Partial sums of A034730.

Crossrefs

Programs

  • Magma
    A344814:= func< n | (&+[Floor(n/k)*3^(k-1): k in [1..n]]) >;
    [A344814(n): n in [1..40]]; // G. C. Greubel, Jun 26 2024
    
  • Maple
    seq(add(3^(k-1)*floor(n/k), k=1..n), n=1..60); # Ridouane Oudra, Feb 05 2023
  • Mathematica
    a[n_] := Sum[3^(k - 1) * Quotient[n, k], {k, 1, n}]; Array[a, 30] (* Amiram Eldar, May 29 2021 *)
  • PARI
    a(n) = sum(k=1, n, n\k*3^(k-1));
    
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, 3^(d-1)));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-3*x^k))/(1-x))
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, 3^(k-1)*x^k/(1-x^k))/(1-x))
    
  • SageMath
    def A344814(n): return sum((n//k)*3^(k-1) for k in range(1,n+1))
    [A344814(n) for n in range(1,41)] # G. C. Greubel, Jun 26 2024

Formula

a(n) = Sum_{k=1..n} Sum_{d|k} 3^(d-1).
G.f.: (1/(1 - x)) * Sum_{k>=1} x^k/(1 - 3*x^k).
G.f.: (1/(1 - x)) * Sum_{k>=1} 3^(k-1) * x^k/(1 - x^k).
a(n) ~ 3^n / 2. - Vaclav Kotesovec, Jun 05 2021
a(n) = (1/2) * Sum_{k=1..n} (3^floor(n/k) - 1). - Ridouane Oudra, Feb 05 2023