A344816 a(n) = Sum_{k=1..n} floor(n/k) * 5^(k-1).
1, 7, 33, 164, 790, 3946, 19572, 97828, 488479, 2442235, 12207861, 61039267, 305179893, 1525898649, 7629414925, 38147071306, 190734961932, 953674808838, 4768372074464, 23841860356470, 119209292012746, 596046459981502, 2980232250997128, 14901161254984784
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Magma
A344816:= func< n | (&+[Floor(n/k)*5^(k-1): k in [1..n]]) >; [A344816(n): n in [1..40]]; // G. C. Greubel, Jun 26 2024
-
Maple
seq(add(5^(k-1)*floor(n/k), k=1..n), n=1..60); # Ridouane Oudra, Mar 05 2023
-
Mathematica
a[n_] := Sum[5^(k - 1) * Quotient[n, k], {k, 1, n}]; Array[a, 30] (* Amiram Eldar, May 29 2021 *)
-
PARI
a(n) = sum(k=1, n, n\k*5^(k-1));
-
PARI
a(n) = sum(k=1, n, sumdiv(k, d, 5^(d-1)));
-
PARI
my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-5*x^k))/(1-x))
-
PARI
my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, 5^(k-1)*x^k/(1-x^k))/(1-x))
-
SageMath
def A344816(n): return sum((n//k)*5^(k-1) for k in range(1,n+1)) [A344816(n) for n in range(1,41)] # G. C. Greubel, Jun 26 2024
Formula
a(n) = Sum_{k=1..n} Sum_{d|k} 5^(d-1).
G.f.: (1/(1 - x)) * Sum_{k>=1} x^k/(1 - 5*x^k).
G.f.: (1/(1 - x)) * Sum_{k>=1} 5^(k-1) * x^k/(1 - x^k).
a(n) ~ 5^n / 4. - Vaclav Kotesovec, Jun 05 2021
a(n) = (1/4) * Sum_{k=1..n} (5^floor(n/k) - 1). - Ridouane Oudra, Mar 05 2023
Comments