cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344821 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals downwards, where A(n,k) = Sum_{j=1..n} floor(n/j) * k^(j-1).

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 4, 5, 4, 1, 5, 9, 8, 5, 1, 6, 15, 20, 10, 6, 1, 7, 23, 46, 37, 14, 7, 1, 8, 33, 92, 128, 76, 16, 8, 1, 9, 45, 164, 349, 384, 141, 20, 9, 1, 10, 59, 268, 790, 1394, 1114, 280, 23, 10, 1, 11, 75, 410, 1565, 3946, 5491, 3332, 541, 27, 11
Offset: 1

Views

Author

Seiichi Manyama, May 29 2021

Keywords

Examples

			Square array, A(n, k), begins:
  1,  1,  1,   1,    1,    1,    1, ...
  2,  3,  4,   5,    6,    7,    8, ...
  3,  5,  9,  15,   23,   33,   45, ...
  4,  8, 20,  46,   92,  164,  268, ...
  5, 10, 37, 128,  349,  790, 1565, ...
  6, 14, 76, 384, 1394, 3946, 9384, ...
Antidiagonal triangle, T(n, k), begins:
  1;
  1,  2;
  1,  3,  3;
  1,  4,  5,   4;
  1,  5,  9,   8,   5;
  1,  6, 15,  20,  10,   6;
  1,  7, 23,  46,  37,  14,   7;
  1,  8, 33,  92, 128,  76,  16,  8;
  1,  9, 45, 164, 349, 384, 141, 20,  9;
		

Crossrefs

Columns k=0..5 give A000027, A006218, A268235, A344814, A344815, A344816.
A(n,n) gives A332533.

Programs

  • Magma
    A:= func< n,k | k eq n select n else (&+[Floor(n/j)*k^(j-1): j in [1..n]]) >;
    A344821:= func< n,k | A(k+1, n-k-1) >;
    [A344821(n,k): k in [0..n-1], n in [1..12]]; // G. C. Greubel, Jun 27 2024
    
  • Mathematica
    A[n_, k_] := Sum[If[k == 0 && j == 1, 1, k^(j - 1)] * Quotient[n, j], {j, 1, n}]; Table[A[k, n - k], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, May 29 2021 *)
  • PARI
    A(n, k) = sum(j=1, n, n\j*k^(j-1));
    
  • PARI
    A(n, k) = sum(j=1, n, sumdiv(j, d, k^(d-1)));
    
  • SageMath
    def A(n,k): return n if k==n else sum((n//j)*k^(j-1) for j in range(1,n+1))
    def A344821(n,k): return A(k+1, n-k-1)
    flatten([[A344821(n,k) for k in range(n)] for n in range(1,13)]) # G. C. Greubel, Jun 27 2024

Formula

G.f. of column k: (1/(1 - x)) * Sum_{j>=1} x^j/(1 - k*x^j).
G.f. of column k: (1/(1 - x)) * Sum_{j>=1} k^(j-1) * x^j/(1 - x^j).
A(n, k) = Sum_{j=1..n} Sum_{d|j} k^(d - 1).
T(n, k) = Sum_{j=1..k+1} floor((k+1)/j) * (n-k-1)^(j-1), for n >= 1, 0 <= k <= n-1 (antidiagonal triangle). - G. C. Greubel, Jun 27 2024