A344847 Sum of the prime numbers in, but not on the border of, an n X n square array whose elements are the numbers from 1..n^2, listed in increasing order by rows.
0, 0, 5, 18, 56, 80, 192, 306, 566, 731, 1273, 1433, 2123, 3023, 3762, 5128, 6604, 7038, 9694, 11735, 13942, 16695, 21015, 22027, 28292, 31972, 37830, 41516, 50405, 51983, 64936, 70032, 80537, 90331, 100611, 108869, 130965, 134475, 149660, 165879, 191969, 196185, 223782
Offset: 1
Keywords
Examples
[1 2 3 4 5] [1 2 3 4] [6 7 8 9 10] [1 2 3] [5 6 7 8] [11 12 13 14 15] [1 2] [4 5 6] [9 10 11 12] [16 17 18 19 20] [1] [3 4] [7 8 9] [13 14 15 16] [21 22 23 24 25] ------------------------------------------------------------------------ n 1 2 3 4 5 ------------------------------------------------------------------------ a(n) 0 0 5 18 56 ------------------------------------------------------------------------
Programs
-
Mathematica
Table[Sum[i (PrimePi[i] - PrimePi[i - 1]), {i, n^2}] - Sum[(n^2 - k + 1) (PrimePi[n^2 - k + 1] - PrimePi[n^2 - k]) + k (PrimePi[k] - PrimePi[k - 1]), {k, n}] - Sum[(n*j + 1) (PrimePi[n*j + 1] - PrimePi[n*j]), {j, n - 2}], {n, 60}]
Formula
a(n) = (Sum_{k=1..n^2} k * c(k)) - (Sum_{k=1..n} (n^2-k+1) * c(n^2-k+1) + k * c(k)) - (Sum_{k=1..n-2} (n*k+1) * c(n*k+1)), where c(n) is the prime characteristic.