cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344847 Sum of the prime numbers in, but not on the border of, an n X n square array whose elements are the numbers from 1..n^2, listed in increasing order by rows.

Original entry on oeis.org

0, 0, 5, 18, 56, 80, 192, 306, 566, 731, 1273, 1433, 2123, 3023, 3762, 5128, 6604, 7038, 9694, 11735, 13942, 16695, 21015, 22027, 28292, 31972, 37830, 41516, 50405, 51983, 64936, 70032, 80537, 90331, 100611, 108869, 130965, 134475, 149660, 165879, 191969, 196185, 223782
Offset: 1

Views

Author

Wesley Ivan Hurt, May 29 2021

Keywords

Examples

			                                                      [1   2  3  4  5]
                                      [1   2  3  4]   [6   7  8  9 10]
                            [1 2 3]   [5   6  7  8]   [11 12 13 14 15]
                   [1 2]    [4 5 6]   [9  10 11 12]   [16 17 18 19 20]
           [1]     [3 4]    [7 8 9]   [13 14 15 16]   [21 22 23 24 25]
------------------------------------------------------------------------
  n         1        2         3            4                 5
------------------------------------------------------------------------
  a(n)      0        0         5           18                56
------------------------------------------------------------------------
		

Crossrefs

Cf. A010051, A344316, A344846 (sum of primes on border).

Programs

  • Mathematica
    Table[Sum[i (PrimePi[i] - PrimePi[i - 1]), {i, n^2}] - Sum[(n^2 - k + 1) (PrimePi[n^2 - k + 1] - PrimePi[n^2 - k]) + k (PrimePi[k] - PrimePi[k - 1]), {k, n}] - Sum[(n*j + 1) (PrimePi[n*j + 1] - PrimePi[n*j]), {j, n - 2}], {n, 60}]

Formula

a(n) = (Sum_{k=1..n^2} k * c(k)) - (Sum_{k=1..n} (n^2-k+1) * c(n^2-k+1) + k * c(k)) - (Sum_{k=1..n-2} (n*k+1) * c(n*k+1)), where c(n) is the prime characteristic.