cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344861 Numbers that are the sum of three fourth powers in exactly ten ways.

Original entry on oeis.org

49511121842, 364765611938, 703409488418, 792177949472, 2667500248322, 3602781562562, 3999861055442, 4010400869202, 5698033074818, 5836249791008, 6330685395762, 7250378688098, 7695882509378, 8746828790882, 10383571090802, 11254551814688, 12160605587858
Offset: 1

Views

Author

David Consiglio, Jr., May 31 2021

Keywords

Comments

Differs from A344862 at term 2 because 281539574498 = 7^4 + 609^4 + 616^4 = 41^4 + 591^4 + 632^4 = 81^4 + 568^4 + 649^4 = 99^4 + 557^4 + 656^4 = 121^4 + 543^4 + 664^4 = 168^4 + 511^4 + 679^4 = 224^4 + 469^4 + 693^4 = 239^4 + 457^4 + 696^4 = 256^4 + 443^4 + 699^4 = 269^4 + 432^4 + 701^4 = 293^4 + 411^4 + 704^4 = 336^4 + 371^4 + 707^4.

Examples

			49511121842 is a term because 49511121842 = 13^4 + 390^4 + 403^4  = 35^4 + 378^4 + 413^4  = 70^4 + 357^4 + 427^4  = 103^4 + 335^4 + 438^4  = 117^4 + 325^4 + 442^4  = 137^4 + 310^4 + 447^4  = 175^4 + 322^4 + 441^4  = 182^4 + 273^4 + 455^4  = 202^4 + 255^4 + 457^4  = 225^4 + 233^4 + 458^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 3):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 10])
    for x in range(len(rets)):
        print(rets[x])

Extensions

More terms from Sean A. Irvine, Jun 01 2021