A344862 Numbers that are the sum of three fourth powers in ten or more ways.
49511121842, 281539574498, 364765611938, 401069383442, 541692688082, 703409488418, 792177949472, 971024246738, 1067666696642, 1090123576178, 1315120863602, 1383280118402, 1442012945282, 1561211646722, 1828395925538, 1868287026242, 1872511131218, 2054230720178
Offset: 1
Keywords
Examples
49511121842 is a term because 49511121842 = 13^4 + 390^4 + 403^4 = 35^4 + 378^4 + 413^4 = 70^4 + 357^4 + 427^4 = 103^4 + 335^4 + 438^4 = 117^4 + 325^4 + 442^4 = 137^4 + 310^4 + 447^4 = 175^4 + 322^4 + 441^4 = 182^4 + 273^4 + 455^4 = 202^4 + 255^4 + 457^4 = 225^4 + 233^4 + 458^4.
Links
- David Consiglio, Jr., Table of n, a(n) for n = 1..21
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**4 for x in range(1, 1000)] for pos in cwr(power_terms, 3): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v >= 10]) for x in range(len(rets)): print(rets[x])