cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344868 Primes p that are equal to (prime(k)+2*prime(k+1)+3*prime(k+2))/2 for some k.

Original entry on oeis.org

17, 101, 191, 227, 293, 431, 461, 557, 571, 757, 821, 863, 1039, 1193, 1213, 1277, 1291, 1307, 1373, 1483, 1499, 1721, 1811, 2239, 2293, 2309, 2447, 2689, 3167, 3181, 3547, 3617, 3701, 3881, 4243, 4441, 4703, 4723, 4871, 5651, 6079, 6101, 6133, 6829, 6907, 6997, 7523, 7853, 7879, 7949
Offset: 1

Views

Author

Zak Seidov, May 31 2021

Keywords

Comments

Corresponding values of k: 2, 10, 17, 20, 24, 33, 35, 41, 42, 53, 57, 60, 68, 77, 78, 81, 82, 83, 87, 93, 94, 104, 109, 131, 134, 135, 140, 153, 176, 177, 193, 196, 201, 209, 222, 233, 246, 247, 256, 288, 306, 307, 308, 337, 341, 344, 367, 379, 380, 382, 393, 395.

Examples

			17 = (3 + 2*5 + 3*7)/2, 101 = (29 + 2*31 + 3*37)/2.
		

Crossrefs

Cf. A034962.

Programs

  • Mathematica
    s = {}; Do[If[PrimeQ[p = (Prime[k] + 2*Prime[k + 1] + 3*Prime[k + 2])/2], AppendTo[s, p]], {k, 400}]; s
    Select[(#[[1]]+2#[[2]]+3#[[3]])/2&/@Partition[Prime[ Range[ 500]],3,1],PrimeQ] (* Harvey P. Dale, Jan 28 2022 *)
  • PARI
    {p = 3; q = 5; r = 7; for (k = 1, 400, if (isprime (P = (p + 2*q + 3*r)/2), print1 (P ", ")); p = q; q = r; r = nextprime (r + 2))}