cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344879 a(n) = A344875(n) / A344878(n), where A344875(n) is multiplicative with a(2^e) = 2^(1+e) - 1, and a(p^e) = p^e -1 for odd primes p, and A344878(n) gives the least common multiple of the same factors.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 3, 2, 1, 1, 6, 1, 1, 4, 1, 1, 1, 1, 3, 2, 1, 1, 1, 2, 3, 2, 1, 1, 2, 1, 3, 2, 1, 4, 2, 1, 1, 2, 6, 1, 1, 1, 3, 2, 1, 2, 6, 1, 1, 1, 1, 1, 2, 4, 3, 2, 5, 1, 4, 6, 1, 2, 1, 2, 1, 1, 3, 2, 1, 1, 2, 1, 3, 4
Offset: 1

Views

Author

Antti Karttunen, Jun 03 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f[2, e_] := 2^(e + 1) - 1; f[p_, e_] := p^e - 1; a[1] = 1; a[n_] := Times @@ (fct = f @@@ FactorInteger[n])/LCM @@ fct; Array[a, 100] (* Amiram Eldar, Jun 03 2021 *)
  • PARI
    A344875(n) = { my(f=factor(n)~); prod(i=1, #f, (f[1, i]^(f[2, i]+(2==f[1, i]))-1)); };
    A344878(n) = if(1==n,n, my(f=factor(n)~); lcm(vector(#f, i, (f[1, i]^(f[2, i]+(2==f[1, i]))-1))));
    A344879(n) = (A344875(n) / A344878(n));
    
  • Python
    from math import prod, lcm
    from sympy import factorint
    def A344879(n): return prod(a := tuple(p**(e+int(p==2))-1 for p, e in factorint(n).items()))//lcm(*a) # Chai Wah Wu, Jun 15 2022