cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344901 Triangle read by rows: T(n,k) is the number of permutations of length n that have k same elements at the same positions with its inverse permutation for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 2, 0, 0, 4, 6, 8, 0, 0, 10, 24, 30, 40, 0, 0, 26, 160, 144, 180, 160, 0, 0, 76, 1140, 1120, 1008, 840, 700, 0, 0, 232, 8988, 9120, 8960, 5376, 4200, 2912, 0, 0, 764, 80864, 80892, 82080, 53760, 30240, 19656, 12768, 0, 0, 2620, 809856, 808640, 808920, 547200, 336000, 157248, 95760, 55680, 0, 0, 9496
Offset: 0

Views

Author

Mikhail Kurkov, Jun 01 2021

Keywords

Examples

			Triangle T(n,k) begins:
     1;
     0,    1;
     0,    0,    2;
     2,    0,    0,    4;
     6,    8,    0,    0,   10;
    24,   30,   40,    0,    0,   26;
   160,  144,  180,  160,    0,    0, 76;
  1140, 1120, 1008,  840,  700,    0,  0, 232;
  8988, 9120, 8960, 5376, 4200, 2912,  0,   0, 764;
  ...
		

Crossrefs

Columns k=0-1 give: A038205, A221145.
Row sums give A000142.
Main diagonal gives A000085.

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(n=0, 1, add(b(n-j, t)*
          binomial(n-1, j-1)*(j-1)!, j=`if`(t=1, 1..min(2, n), 3..n)))
        end:
    T:= (n, k)-> binomial(n, k)*b(k, 1)*b(n-k, 0):
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Oct 28 2024
  • Mathematica
    b[n_, t_] := b[n, t] = If[n == 0, 1, Sum[b[n-j, t]* Binomial[n-1, j-1]*(j-1)!, {j, If[t == 1, Range @ Min[2, n], Range[3, n]]}]];
    T[n_, k_] := Binomial[n, k]*b[k, 1]*b[n-k, 0];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Apr 24 2025, after Alois P. Heinz *)

Formula

T(n,k) = binomial(n,k)*A000085(k)*A038205(n-k).
From Alois P. Heinz, Oct 28 2024: (Start)
Sum_{k=0..n} k * T(n,k) = A052849(n) = A098558(n) for n>=2.
Sum_{k=0..n} (n-k) * T(n,k) = A052571(n).
Sum_{k=0..n} (-1)^k * T(n,k) = A000023(n).
T(n,0) + T(n,1) = A137482(n). (End)