cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344941 Numbers that are the sum of five fourth powers in exactly six ways.

Original entry on oeis.org

151300, 225890, 236194, 243235, 246674, 250834, 286114, 288579, 300835, 302130, 302210, 303235, 309059, 317795, 320195, 334819, 334899, 335443, 336210, 338914, 346835, 356899, 363379, 366995, 373234, 375619, 389875, 391154, 392259, 393314, 394354, 412339
Offset: 1

Views

Author

David Consiglio, Jr., Jun 03 2021

Keywords

Comments

Differs from A344940 at term 2 because 197779 = 1^4 + 5^4 + 6^4 + 16^4 + 19^4 = 1^4 + 7^4 + 11^4 + 12^4 + 20^4 = 1^4 + 10^4 + 12^4 + 17^4 + 17^4 = 2^4 + 4^4 + 5^4 + 7^4 + 21^4 = 3^4 + 5^4 + 6^4 + 6^4 + 21^4 = 4^4 + 7^4 + 9^4 + 13^4 + 20^4 = 11^4 + 13^4 + 14^4 + 15^4 + 16^4.

Examples

			151300 is a term because 151300 = 3^4 + 3^4 + 3^4 + 12^4 + 19^4  = 3^4 + 11^4 + 11^4 + 14^4 + 17^4  = 3^4 + 13^4 + 13^4 + 13^4 + 16^4  = 6^4 + 9^4 + 9^4 + 9^4 + 19^4  = 7^4 + 11^4 + 11^4 + 11^4 + 18^4  = 8^4 + 9^4 + 13^4 + 13^4 + 17^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 6])
    for x in range(len(rets)):
        print(rets[x])