cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345100 a(n) = Sum_{k=1..n} k^floor(n/k).

Original entry on oeis.org

1, 3, 6, 12, 17, 33, 40, 68, 95, 141, 152, 328, 341, 461, 738, 1130, 1147, 2159, 2178, 4068, 5841, 6997, 7020, 18198, 20723, 25001, 38798, 61546, 61575, 137445, 137476, 223252, 342593, 408435, 485376, 1213988, 1214025, 1476549, 2541498, 4202810, 4202851, 8777205
Offset: 1

Views

Author

Seiichi Manyama, Jun 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[k^Floor[n/k], {k, 1, n}]; Array[a, 40] (* Amiram Eldar, Jun 08 2021 *)
  • PARI
    a(n) = sum(k=1, n, k^(n\k));
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, k*x^k*(1-x^k)/(1-k*x^k))/(1-x))

Formula

G.f.: (1/(1 - x)) * Sum_{k>=1} k*x^k * (1 - x^k)/(1 - k*x^k).
a(n) ~ 3^((n - mod(n,3))/3). - Vaclav Kotesovec, Jun 11 2021