cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A345098 a(n) = Sum_{k=1..n} floor(n/k)^floor(n/k).

Original entry on oeis.org

1, 5, 29, 262, 3132, 46690, 823578, 16777484, 387420781, 10000003165, 285311673777, 8916100495209, 302875106639207, 11112006826381861, 437893890381686113, 18446744073726332260, 827240261886353544822, 39346408075296925042900
Offset: 1

Views

Author

Seiichi Manyama, Jun 07 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Floor[n/k]^Floor[n/k], {k, 1, n}]; Array[a, 20] (* Amiram Eldar, Jun 08 2021 *)
  • PARI
    a(n) = sum(k=1, n, (n\k)^(n\k));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(j=1, N, (1-x^j)*sum(k=1, N, (k*x^j)^k))/(1-x))

Formula

G.f.: (1/(1 - x)) * Sum_{j>=1} Sum_{k>=1} (k*x^j)^k * (1 - x^j).
a(n) ~ n^n. - Vaclav Kotesovec, Jun 11 2021

A345176 a(n) = Sum_{k=1..n} floor(n/k)^k.

Original entry on oeis.org

1, 3, 5, 10, 12, 26, 28, 52, 73, 115, 117, 295, 297, 439, 713, 1160, 1162, 2448, 2450, 4644, 6832, 8902, 8904, 23536, 25639, 33857, 53247, 84961, 84963, 192237, 192239, 318477, 493909, 625015, 695789, 1761668, 1761670, 2285996, 3872598, 6255230, 6255232, 13392362
Offset: 1

Views

Author

Seiichi Manyama, Jun 10 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Floor[n/k]^k, {k, 1, n}]; Array[a, 40] (* Amiram Eldar, Jun 10 2021 *)
  • PARI
    a(n) = sum(k=1, n, (n\k)^k);
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(j=1, N, (1-x^j)*sum(k=1, N, (k*x^k)^j))/(1-x))

Formula

G.f.: (1/(1 - x)) * Sum_{j>=1} Sum_{k>=1} (k*x^k)^j * (1 - x^j).
a(n) ~ 3^((n - mod(n,3))/3 + 1)/2. - Vaclav Kotesovec, Jun 11 2021
Showing 1-2 of 2 results.