cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A347415 a(n) = Sum_{k=1..n} floor((n/k)^k).

Original entry on oeis.org

1, 3, 6, 11, 18, 31, 48, 76, 118, 184, 279, 426, 641, 966, 1448, 2163, 3228, 4805, 7137, 10586, 15681, 23198, 34278, 50606, 74632, 109987, 161954, 238312, 350432, 514999, 756407, 1110391, 1629219, 2389346, 3502578, 5132354, 7517523, 11007078, 16110784, 23573102, 34480937, 50420909
Offset: 1

Views

Author

Seiichi Manyama, Aug 31 2021

Keywords

Examples

			a(3) = [3/1] + [(3/2)^2] + [(3/3)^3] = 3 + 2 + 1 = 6.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Floor[(n/k)^k], {k, 1, n}]; Array[a, 40] (* Amiram Eldar, Aug 31 2021 *)
  • PARI
    a(n) = sum(k=1, n, n^k\k^k);

Formula

a(n) ~ sqrt(2*Pi*n) * exp(exp(-1)*n - 1/2). - Vaclav Kotesovec, Sep 14 2021

A350147 a(n) = Sum_{k=1..n} floor(n/(2*k-1))^k.

Original entry on oeis.org

1, 2, 4, 5, 7, 11, 13, 14, 21, 29, 31, 39, 41, 57, 87, 88, 90, 133, 135, 173, 253, 317, 319, 335, 398, 526, 756, 932, 934, 1300, 1302, 1303, 1991, 2503, 3001, 3806, 3808, 4832, 6918, 7088, 7090, 9836, 9838, 13206, 21860, 25956, 25958, 25990, 27097, 35560, 54766
Offset: 1

Views

Author

Seiichi Manyama, Dec 16 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Floor[n/(2*k - 1)]^k, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, Dec 17 2021 *)
  • PARI
    a(n) = sum(k=1, n, (n\(2*k-1))^k);
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(j=1, N, (1-x^(2*j-1))*sum(k=1, N, k^j*x^(k*(2*j-1))))/(1-x))

Formula

G.f.: (1/(1 - x)) * Sum_{j>=1} Sum{k>=1} k^j * x^(k*(2*j-1)) * (1 - x^(2*j-1)).
Limit_{n->infinity} a(n)^(1/n) = exp(exp(-1)/2). - Vaclav Kotesovec, Dec 17 2021
Showing 1-2 of 2 results.