cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A345103 a(n) = 1 + 4 * Sum_{k=0..n-1} binomial(n,k) * a(k) * a(n-k-1).

Original entry on oeis.org

1, 5, 61, 1277, 37741, 1437725, 67013101, 3693540317, 234974905261, 16945434018845, 1366008048556141, 121721015465713757, 11880107754103150381, 1260413749895624939165, 144427420001275864755181, 17776090894283922227621597, 2338833689096321086977341101, 327585830473259220341296486685
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = 1 + 4 Sum[Binomial[n, k] a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 17}]
    nmax = 17; CoefficientList[Series[Exp[x]/Sqrt[9 - 8 Exp[x]], {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[Sum[Binomial[n, k] StirlingS2[k, j] 4^j (2 j - 1)!!, {j, 0, k}], {k, 0, n}], {n, 0, 17}]
  • PARI
    N=20; x='x+O('x^N); Vec(serlaplace(exp(x)/sqrt(9-8*exp(x)))) \\ Seiichi Manyama, Oct 20 2021

Formula

E.g.f.: exp(x) / sqrt(9 - 8 * exp(x)).

A345105 a(n) = 1 + 3 * Sum_{k=0..n-1} binomial(n-1,k) * a(k) * a(n-k-1).

Original entry on oeis.org

1, 4, 25, 247, 3283, 54661, 1092427, 25473037, 678837319, 20351864821, 677954261635, 24842157250117, 993040102321927, 43003754679356941, 2005536858420616963, 100211634039201328381, 5341144936822423446247, 302468060262966258380773, 18136282125753572653056355
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = 1 + 3 Sum[Binomial[n - 1, k] a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 18}]
    nmax = 18; A[] = 1; Do[A[x] = Normal[Integrate[3 A[x]^2 + Exp[x], x] + O[x]^(nmax + 1)], nmax]; CoefficientList[A[x], x] Range[0, nmax]!

Formula

E.g.f. A(x) satisfies: A'(x) = 3 * A(x)^2 + exp(x).
Showing 1-2 of 2 results.