cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345122 Numbers that are the sum of three third powers in exactly ten ways.

Original entry on oeis.org

34012224, 58995000, 71319312, 72505152, 92853216, 94118760, 95331816, 139755888, 147545280, 150506000, 157464000, 159874560, 161023680, 164186352, 171904032, 182393856, 184909824, 188224128, 189771336, 191260224, 199108125, 201342240, 202440384, 217054720
Offset: 1

Views

Author

David Consiglio, Jr., Jun 08 2021

Keywords

Comments

Differs from A345121 at term 3 because 69190848 = 23^3 + 107^3 + 407^3 = 23^3 + 191^3 + 395^3 = 33^3 + 271^3 + 365^3 = 35^3 + 299^3 + 347^3 = 50^3 + 137^3 + 404^3 = 89^3 + 308^3 + 338^3 = 95^3 + 178^3 + 396^3 = 107^3 + 179^3 + 395^3 = 121^3 + 149^3 + 399^3 = 152^3 + 254^3 + 365^3 = 206^3 + 215^3 + 368^3.

Examples

			34012224 is a term because 34012224 = 35^3 + 215^3 + 287^3  = 38^3 + 152^3 + 311^3  = 40^3 + 113^3 + 318^3  = 44^3 + 245^3 + 266^3  = 71^3 + 113^3 + 317^3  = 99^3 + 191^3 + 295^3  = 101^3 + 226^3 + 276^3  = 117^3 + 185^3 + 295^3  = 161^3 + 215^3 + 269^3  = 172^3 + 213^3 + 266^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 3):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 10])
    for x in range(len(rets)):
        print(rets[x])

Extensions

More terms from Sean A. Irvine, Jun 08 2021