A345146 Numbers that are the sum of four third powers in nine or more ways.
21896, 36225, 42120, 46683, 46872, 48321, 48825, 50806, 50904, 51408, 51480, 51506, 51688, 52208, 52416, 53200, 53865, 54971, 55575, 56385, 57113, 58338, 58968, 59059, 60480, 60515, 60984, 62244, 62433, 65303, 66024, 66276, 66339, 66430, 67158, 67536, 67851
Offset: 1
Keywords
Examples
42120 is a term because 42120 = 1^3 + 19^3 + 22^3 + 27^3 = 2^3 + 3^3 + 13^3 + 33^3 = 2^3 + 6^3 + 17^3 + 32^3 = 3^3 + 3^3 + 20^3 + 31^3 = 3^3 + 17^3 + 20^3 + 29^3 = 3^3 + 13^3 + 14^3 + 32^3 = 6^3 + 15^3 + 16^3 + 31^3 = 7^3 + 17^3 + 23^3 + 27^3 = 11^3 + 13^3 + 21^3 + 29^3.
Links
- David Consiglio, Jr., Table of n, a(n) for n = 1..10000
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**3 for x in range(1, 1000)] for pos in cwr(power_terms, 4): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v >= 9]) for x in range(len(rets)): print(rets[x])