A345151 Numbers that are the sum of four third powers in exactly seven ways.
13104, 18928, 19376, 20755, 21203, 22743, 24544, 24570, 24787, 25172, 25928, 27755, 27846, 28917, 29582, 31031, 31248, 31528, 32858, 34056, 34713, 35289, 35317, 35441, 35497, 35712, 36190, 36288, 36610, 36890, 36946, 38080, 39221, 39440, 39464, 39851, 39942
Offset: 1
Keywords
Examples
13104 is a term because 13104 = 1^3 + 10^3 + 16^3 + 18^3 = 1^3 + 11^3 + 14^3 + 19^3 = 2^3 + 9^3 + 15^3 + 19^3 = 4^3 + 6^3 + 14^3 + 20^3 = 4^3 + 9^3 + 10^3 + 21^3 = 5^3 + 7^3 + 11^3 + 21^3 = 8^3 + 9^3 + 14^3 + 19^3.
Links
- David Consiglio, Jr., Table of n, a(n) for n = 1..10000
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**3 for x in range(1, 1000)] for pos in cwr(power_terms, 4): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v == 7]) for x in range(len(rets)): print(rets[x])
Comments