A345152 Numbers that are the sum of four third powers in eight or more ways.
21896, 27720, 30429, 31339, 31402, 33579, 34624, 34776, 36162, 36225, 40105, 42120, 42695, 44037, 44163, 44226, 44947, 45162, 45675, 46277, 46683, 46872, 46900, 47600, 48321, 48825, 49042, 50112, 50689, 50806, 50904, 51058, 51408, 51480, 51506, 51597, 51688
Offset: 1
Keywords
Examples
30429 is a term because 30429 = 1^3 + 4^3 + 7^3 + 30^3 = 1^3 + 16^3 + 17^3 + 26^3 = 2^3 + 12^3 + 21^3 + 25^3 = 3^3 + 3^3 + 14^3 + 29^3 = 4^3 + 17^3 + 21^3 + 23^3 = 5^3 + 11^3 + 15^3 + 28^3 = 6^3 + 6^3 + 22^3 + 25^3 = 7^3 + 14^3 + 18^3 + 26^3.
Links
- David Consiglio, Jr., Table of n, a(n) for n = 1..10000
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**3 for x in range(1, 1000)] for pos in cwr(power_terms, 4): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v >= 8]) for x in range(len(rets)): print(rets[x])