A345156 Numbers that are the sum of four third powers in exactly ten ways.
21896, 36225, 48825, 51506, 52416, 53200, 58338, 58968, 60480, 66024, 67851, 70434, 70525, 71155, 72819, 76923, 78624, 78912, 85995, 87507, 88641, 90181, 90783, 91728, 93555, 97552, 98280, 98560, 99008, 99225, 99792, 100170, 103040, 104104, 104265, 104958
Offset: 1
Keywords
Examples
21896 is a term because 21896 = 1^3 + 11^3 + 19^3 + 22^3 = 2^3 + 2^3 + 12^3 + 26^3 = 2^3 + 3^3 + 19^3 + 23^3 = 2^3 + 5^3 + 15^3 + 25^3 = 3^3 + 10^3 + 16^3 + 24^3 = 3^3 + 17^3 + 19^3 + 19^3 = 4^3 + 6^3 + 20^3 + 22^3 = 5^3 + 8^3 + 14^3 + 25^3 = 7^3 + 11^3 + 17^3 + 23^3 = 8^3 + 9^3 + 19^3 + 22^3.
Links
- David Consiglio, Jr., Table of n, a(n) for n = 1..10000
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**3 for x in range(1, 1000)] for pos in cwr(power_terms, 4): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v == 10]) for x in range(len(rets)): print(rets[x])
Comments