A345170 Number of integer partitions of n with an alternating permutation.
1, 1, 1, 2, 3, 5, 6, 10, 14, 19, 25, 36, 48, 64, 84, 111, 146, 191, 244, 315, 404, 515, 651, 823, 1035, 1295, 1616, 2011, 2492, 3076, 3787, 4650, 5695, 6952, 8463, 10280, 12460, 15059, 18162, 21858, 26254, 31463, 37641, 44933, 53554, 63704, 75653, 89683, 106162, 125445, 148020
Offset: 0
Keywords
Examples
The a(1) = 1 through a(8) = 14 partitions: (1) (2) (3) (4) (5) (6) (7) (8) (21) (31) (32) (42) (43) (53) (211) (41) (51) (52) (62) (221) (321) (61) (71) (311) (411) (322) (332) (2211) (331) (422) (421) (431) (511) (521) (3211) (611) (22111) (3221) (3311) (4211) (22211) (32111)
Links
- Joseph Likar, Table of n, a(n) for n = 0..1000
Crossrefs
Includes all strict partitions A000009.
Including twins (x,x) gives A344740.
The Heinz numbers of these partitions are A345172.
The version for factorizations is A348379.
A000041 counts integer partitions.
A001250 counts alternating permutations.
A003242 counts anti-run compositions.
A005649 counts anti-run patterns.
A344604 counts alternating compositions with twins.
Programs
-
Mathematica
wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1]; Table[Length[Select[IntegerPartitions[n],Select[Permutations[#],wigQ]!={}&]],{n,0,15}]
Extensions
a(26)-a(32) from Robert Price, Jun 23 2021
a(33)-a(48) from Alois P. Heinz, Jun 23 2021
a(49) onwards from Joseph Likar, Sep 05 2023
Comments