A345209 Number of Petrie polygons on the regular triangular map corresponding to the principal congruence subgroup Gamma(n) of the modular group.
1, 1, 3, 4, 6, 6, 21, 16, 27, 12, 66, 24, 78, 42, 36, 64, 136, 162, 190, 48, 252, 132, 253, 192, 150, 156, 243, 168, 870, 72, 496, 256, 396, 816, 252, 648, 666, 1140, 468, 384, 1722, 504, 903, 1056, 324, 1518, 3243, 1536, 1029, 300, 816, 624, 1378, 1458, 3960, 1344, 1140, 1740, 1770, 576
Offset: 1
Examples
The regular triangular map corresponding to Gamma(3) is the tetrahedron; one can easily check by hand that there are 3 distinct closed left-right zigzag paths (Petrie polygons) along the edges of the tetrahedron, so a(3) = 3. Similarly, there are a(4) = 4 and a(5) = 6 such paths on the octahedron and the icosahedron, the maps corresponding to Gamma(4), and Gamma(5) respectively. The map corresponding to Gamma(7) is the Klein map on his quartic curve. There are 21 Petrie polygons on this map; Klein drew 3 of them in his 1878 paper on the quartic, and the others can be found by rotating these through 2*Pi*k/7, k=1,...,6.
Links
- Tom Harris, Table of n, a(n) for n = 1..1000
- F. Klein, Ueber die Transformation siebenter Ordnungder elliptischen Funktionen, Mathematische Annalen, 14 (1878), 428-471.
- D. Singerman and J. Strudwick, Petrie polygons, Fibonacci sequences and Farey maps, Ars Mathematica Contemporanea, 10 (2016), 349-357.
Crossrefs
A301759 gives the lengths of the Petrie polygons on the map in question.
Programs
-
Mathematica
b[n_] := (n^3/2) Times @@ (1-1/Select[Range[n], Mod[n, #] == 0 && PrimeQ[#]&]^2); c[n_] := With[{F = Fibonacci}, For[k = 1, True, k++, If[Mod[F[k], n] == 0 && (Mod[F[k+1], n] == 1 || Mod[F[k+1], n] == n-1), Return[k]]]]; a[n_] := If[n<3, 1, b[n]/c[n]]; Array[a, 60] (* Jean-François Alcover, Jun 11 2021 *) Table[((n^3/2^Boole[n > 1]) Product[1 - 1/k^2, {k, Select[Divisors[n], PrimeQ]}])/NestWhile[# + 1 &, 1, ! (Mod[Fibonacci[#], n] == 0 && With[{f = Mod[Fibonacci[# + 1], n]}, f == 1 || f == n - 1]) &], {n, 60}] (* Jan Mangaldan, Sep 12 2021 *)
-
Python
from sympy import primefactors def a(n): # degenerate cases if n == 1 or n == 2: return 1 # calculate index of Γ(n) in Γ index = n**3 for p in primefactors(n): index *= (p**2 - 1) index //= p**2 index //= 2 # calculate pisano semiperiod sigma = 1 a, b = 1, 1 while (a,b) != (0,1) and (a,b) != (0, n - 1): a, b = b, (a + b) % n sigma += 1 # number of petrie polygons = index / sigma return index // sigma
Comments