cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345219 Number of divisors d of n with an odd number of primes not exceeding d.

Original entry on oeis.org

0, 1, 0, 1, 1, 2, 0, 1, 0, 2, 1, 3, 0, 1, 1, 1, 1, 3, 0, 2, 0, 2, 1, 4, 2, 2, 1, 2, 0, 3, 1, 2, 2, 3, 2, 5, 0, 1, 0, 2, 1, 3, 0, 2, 1, 2, 1, 5, 1, 4, 2, 3, 0, 4, 2, 2, 0, 1, 1, 5, 0, 2, 0, 2, 1, 4, 1, 4, 2, 4, 0, 6, 1, 2, 3, 2, 2, 4, 0, 2, 1, 2, 1, 6, 3, 2, 1, 3, 0, 4, 0, 2, 1
Offset: 1

Views

Author

Wesley Ivan Hurt, Jun 11 2021

Keywords

Comments

Inverse Möbius transform of pi(n) mod 2 = A071986(n). - Wesley Ivan Hurt, Jul 04 2025

Examples

			a(24) = 4; The divisors d of 24 are: 1, 2, 3, 4, 6, 8, 12, 24 and the corresponding values of pi(d) are: 0, 1, 2, 2, 3, 4, 5, 9. There are 4 odd values of pi(d).
		

Crossrefs

Cf. A000005 (tau), A000720 (pi), A071986, A345220.

Programs

  • Mathematica
    Table[Sum[Mod[PrimePi[d], 2], {d, Divisors[n]}], {n, 100}]
  • PARI
    a(n) = sumdiv(n, d, primepi(d) % 2); \\ Michel Marcus, Jun 11 2021

Formula

a(n) = Sum_{d|n} (pi(d) mod 2).
a(n) = A000005(n) - A345220(n). - Wesley Ivan Hurt, Jul 05 2025