A345219 Number of divisors d of n with an odd number of primes not exceeding d.
0, 1, 0, 1, 1, 2, 0, 1, 0, 2, 1, 3, 0, 1, 1, 1, 1, 3, 0, 2, 0, 2, 1, 4, 2, 2, 1, 2, 0, 3, 1, 2, 2, 3, 2, 5, 0, 1, 0, 2, 1, 3, 0, 2, 1, 2, 1, 5, 1, 4, 2, 3, 0, 4, 2, 2, 0, 1, 1, 5, 0, 2, 0, 2, 1, 4, 1, 4, 2, 4, 0, 6, 1, 2, 3, 2, 2, 4, 0, 2, 1, 2, 1, 6, 3, 2, 1, 3, 0, 4, 0, 2, 1
Offset: 1
Keywords
Examples
a(24) = 4; The divisors d of 24 are: 1, 2, 3, 4, 6, 8, 12, 24 and the corresponding values of pi(d) are: 0, 1, 2, 2, 3, 4, 5, 9. There are 4 odd values of pi(d).
Programs
-
Mathematica
Table[Sum[Mod[PrimePi[d], 2], {d, Divisors[n]}], {n, 100}]
-
PARI
a(n) = sumdiv(n, d, primepi(d) % 2); \\ Michel Marcus, Jun 11 2021
Formula
a(n) = Sum_{d|n} (pi(d) mod 2).
Comments