A345220 Number of divisors d of n with an even number of primes not exceeding d.
1, 1, 2, 2, 1, 2, 2, 3, 3, 2, 1, 3, 2, 3, 3, 4, 1, 3, 2, 4, 4, 2, 1, 4, 1, 2, 3, 4, 2, 5, 1, 4, 2, 1, 2, 4, 2, 3, 4, 6, 1, 5, 2, 4, 5, 2, 1, 5, 2, 2, 2, 3, 2, 4, 2, 6, 4, 3, 1, 7, 2, 2, 6, 5, 3, 4, 1, 2, 2, 4, 2, 6, 1, 2, 3, 4, 2, 4, 2, 8, 4, 2, 1, 6, 1, 2, 3, 5, 2, 8, 4, 4, 3
Offset: 1
Keywords
Examples
a(24) = 4; The divisors d of 24 are: 1, 2, 3, 4, 6, 8, 12, 24 and the corresponding values of pi(d) are: 0, 1, 2, 2, 3, 4, 5, 9. There are 4 even values of pi(d).
Programs
-
Mathematica
Table[Sum[Mod[PrimePi[d] + 1, 2], {d, Divisors[n]}], {n, 100}]
-
PARI
a(n) = sumdiv(n, d, !(primepi(d) % 2)); \\ Michel Marcus, Jun 11 2021
Formula
a(n) = Sum_{d|n} ((pi(d)+1) mod 2).
Comments