A345223 a(n) is the smallest k >= 0 such that the decimal concatenation 1 (n times) || k || 1 (n times) is a prime, or -1 if no such k exists.
0, 3, 4, 8, 10, 8, 5, 21, 1, 6, 1, 116, 23, 6, 73, 24, 16, 62, 3, 10, 19, 53, 61, 58, 191, 9, 265, 12, 133, 86, 141, 4, 7, 39, 193, 31, 51, 13, 31, 6, 31, 53, 287, 139, 4, 239, 187, 25, 18, 144, 31, 38, 93, 86, 27, 30, 16, 24, 6, 356, 50, 91, 395, 117, 217, 61
Offset: 1
Examples
For n = 3: 1110111, 1111111, 1112111 and 1113111 are all composite, while 1114111 is prime, so the smallest number that can be inserted between strings of three ones so that the concatenation is prime is 4. Therefore a(3) = 4.
Programs
-
Mathematica
Table[Module[{k=0},While[!PrimeQ[FromDigits[Flatten[Join[{PadRight[ {},n,1],IntegerDigits[ k],PadRight[{},n,1]}]]]],k++];k],{n,70}] (* Harvey P. Dale, Jun 03 2024 *)
-
PARI
eva(n) = subst(Pol(n), x, 10) a(n) = my(v=vector(n, t, 1), d, w=[]); for(k=0, oo, d=digits(k); w=concat(v, d); w=concat(w, v); if(ispseudoprime(eva(w)), return(k)))
-
Python
from sympy import isprime def a(n, d=1): k, bread = 0, str(d)*n while not isprime(int(bread + str(k) + bread)): k += 1 return k print([a(n) for n in range(1, 67)]) # Michael S. Branicky, Jun 11 2021
Comments