cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345270 a(n) = Sum_{d|n} d^tau(n/d).

Original entry on oeis.org

1, 3, 4, 9, 6, 20, 8, 33, 19, 40, 12, 108, 14, 68, 50, 161, 18, 225, 20, 278, 80, 148, 24, 850, 51, 200, 136, 600, 30, 1114, 32, 1089, 164, 328, 110, 3387, 38, 404, 218, 2450, 42, 3214, 44, 1892, 558, 580, 48, 12596, 99, 1409, 350, 2958, 54, 8630, 202, 6370, 428, 904, 60, 33042
Offset: 1

Views

Author

Wesley Ivan Hurt, Jun 12 2021

Keywords

Comments

If p is a prime, a(p) = Sum_{d|p} d^tau(p/d) = 1^2 + p^1 = p + 1.

Examples

			a(10) = Sum_{d|10} d^tau(10/d) = 1^4 + 2^2 + 5^2 + 10^1 = 40.
		

Crossrefs

Cf. A000005 (tau), A174937, A345271.

Programs

  • Mathematica
    Table[Sum[k^DivisorSigma[0, n/k] (1 - Ceiling[n/k] + Floor[n/k]), {k, n}], {n, 60}]
  • PARI
    a(n) = sumdiv(n, d, d^numdiv(n/d)); \\ Michel Marcus, Oct 08 2021

Formula

a(n) = Sum_{d|n} (n/d)^tau(d). - Wesley Ivan Hurt, Jun 09 2023